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This is a collection of references for a series of lectures that I gave in the “boot
camp” of the semester on spectral graph theory at the Simons Institute in August,
2014. To keep this document focused, I only refer to results related to the lectures
in question, which means that my own work is disproportionally represented. I plan
to post a better version of this document in the future, so please send me corrections
and additions.

1 Definitions

In the following, G = (V,E) is an undirected graph, and L = I −D−1/2LD−1/2 is the
normalized Laplacian of G, where D is the diagonal matrix of degrees; we denote by
dv = Dv,v the degree of vertex v.

The Rayleigh quotient of a vector x ∈ RV is

R(x) :=

∑
{u,v}∈E |xu − xv|2∑

v dvx
2
v

(This is actually the Rayleigh quotient of x
√
D; hopefully this abuse of notation will

not cause confusion.)

We denote the eigenvalues of L by the non-increasing sequence

0 = λ1 ≤ λ2 ≤ · · · ≤ λn

∗luca@berkeley.edu. Compute Science Division and Simons Institute for the Theory of Comput-
ing, U.C. Berkeley. This material is based upon work supported by the National Science Foundation
under Grant No. 1216642 and by the US-Israel BSF Grant No. 2010451. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author and do not
necessarily reflect the views of the National Science Foundation.

1



The volume vol(S) of a subset of vertices S ⊆ V is the sum of the degrees, vol(S) :=∑
v dv. The conductance of a nonempty set S is

φG(S) :=
E(S, V − S)

vol(S)

note that
φG(S) = R(1S)

We will usually omit the subscript. The conductance of a graph is

φ(G) = min
S: vol(S)≤ 1

2
vol(S)

φG(S)

A closely related notion is the (degree-weighted, normalized) uniform sparsity of a
cut. The uniform sparsity of a set S is

usG(S) := vol(V ) · E(S, V − S)

vol(S) · vol(V − S)

and the (degree-weighted) uniform sparsest cut problem on a graph is the optimization
problem

usc(G) = min
S

usG(S)

We have 1
2
usc(G) ≤ φ(G) ≤ usc(G), and there is a standard reduction from the

problem of computing φ(G) in general graphs to computing φ(G) in bounded-degree
regular graphs, with a constant loss in approximation, so provided that one is allowed
to add constant terms to the approximation analysis, one may use uniform sparsest
cut and conductance interchangeably, and one may assume regularity and bounded
degree without loss of generality.

It is a classical result (I am not aware of what is a correct early reference) that λk = 0
if and only if G has at least k connected components. We discuss robust versions of
this result and their applications.

The k = 2 case is well understood via the discrete Cheeger inequalities

λ2
2
≤ φ(G) ≤

√
2λ2 (1)

Dodziuk [Dod84] proves the discrete Cheeger inequality in the above form. Indepen-
dently, a relation between vertex expansion and λ2 was proved by Alon and Milman
[Alo86, AM85]; following the argument of Alon and Milman, Sinclair and Jerrum
[SJ89] and Lawler and Sokal [LS88] prove the above relation between conductance
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and second eigenvalue of the normalized Laplacian (in their setting, one minus the
second eigenvalue of the random walk on the graph, which is the same). The work of
Dodziuk and of Alon and Milman follows Cheeger’s proof of his inequality concerning
Riemann manifolds [Che70].

Importantly, the proof that φ(G) ≤
√

2λ2 is constructive, in the sense that given
an eigenvector of λ2 one finds a cut of expansion at most

√
2λ2 in nearly linear

time. The algorithm to find such a cut was first described by Fiedler [Fie73] and it
has been widely used in practice. The work of Dodziuk was motivated by the goal
of studying discrete analogs of results in Riemann geometry, the work of Alon and
Milman was motivated by the goal of finding necessary and sufficient conditions for
graph expansion, and the work of Sinclair and Jerrum and of Lawler and Sokal was
motivated by the goal of understanding the mixing time of random walks. I am not
sure at what point it was realized that the discrete Cheeger inequalities could be seen
as a worst-case analysis of the quality of the cut produced by Fiedler’s algorithm; the
1996 Spielman-Teng paper on planar graphs [ST96] takes it as a long established fact
and refers to [AM85, SJ89].

Some of the results that we discuss below have only been proved in the case of
regular graphs, but generally speaking all the techniques being used have natural
generalizations to the case of irregular graphs.

2 Graphs in which λk is large

The theme of several results concerning graphs with large λk is that they are easy
instances for approximation algorithms.

This was first realized by Kolla [Kol10], who proved that if one has an instance
of Unique Games in which the associated label-extended graph has a sufficiently
large value of λk then, under an additional assumption on the smoothness of the
corresponding eigenvector, one can find a good approximation in time polynomial in
the input size and exponential in k via the technique of subspace enumeration.

Arora, Barak and Steurer [ABS10] give a simpler proof of this result, without the
smoothness requirement; combined with their “higher order Cheeger inequality” (see
below), this gives their sub-exponential algorithm for small-set expansion and unique
games.1

Concerning the approximation of conductance, Arora, Barak and Steurer show that
one can get a O(1/λk)-factor approximation in time exp(O(k)) · nO(1).

Barak, Raghavendra and Steurer [BRS11] show that one can use semidefinite pro-

1The paper of Arora, Barak, and Steurer, establishing properties of graphs in which λk is small,
as well as properties of graphs in which λk is large, was the catalyst for much of the work on higher
eigenvalues described in this document.
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gramming to replicate the trade-off between running time and spectral assumption
in the Arora-Barak-Steurer algorithms.

Guruswami and Sinop [GS13] show that the subspace enumeration algorithm of Arora,
Barak and Steurer can be combined with an algorithm of Andersen and Lang [AL08]
to show that if λk is a sufficiently large constant times φ(G), then one can find
a constant factor approximation of φ(G) in time exp(O(k)) · nO(1). For example,
if λk > 16usc(G) then one finds 4-approximation of usc(G). Using hierarchies of
semidefinite programs, Guruswami and Sinop prove that there is a constant c such
that if λk > cε−1usc(G) then a (1 + ε)-approximation of usc can be found in time
exp(O(k/ε2)) · nO(1).

Kwok et al. [KLL+13] prove that there is a constant c such that, for every k, if SF is
the cut found by Fiedler’s algorithm using an eigenvector of λ2, one has the refined
Cheeger inequality

φ(G) ≤ φ(SF ) ≤ c · k · λ2√
λk

(2)

which means that, in graphs in which λk is large for small k, one has an improved
analysis of Fiedler’s algorithm compared to what comes out of the standard Cheeger
inequality.

Oveis-Gharan and Trevisan [OT13a] show that the ARV relaxation of conductance
[ARV04] can be rounded with an approximation ratio of O(

√
log k) provided that

λk ≥ c · (log k)2.5 · φ(G), where c is an absolute constant.

Oveis-Gharan and Trevisan [OT13b] show that graphs in which λk is large for small
k satisfy a weak regularity Lemma in the sense of Frieze and Kannan [FK96], and
this, together with the Frieze-Kannan algorithms, recovers weaker versions of the
approximation algorithms in [BRS11, GS13].

Arora, Ge and Sinop [AGS13] show that for every ε there is a cε such that one get a
(1 + ε) approximation to uscG in time polynomial in n and exponential in k, provided
that SSE 1

k
(G) > cε

√
log k
√

log n · uscG. Oveis-Gharan and Trevisan [OT13a] prove
that constant-factor approximation is possible in the same running time provided
that φk(G) > c ·

√
log k ·

√
log n · log log n · uscG.

The algorithms in [BRS11, GS13, KLL+13, AGS13, OT13a] rely on the fact that, in
graphs in which λk is large, certain convex relaxations have “structured” optimal and
near-optimal solutions, which are easier to round than general solutions. The algo-
rithms in [ABS10, OT13b] rely on the fact that near-optimal combinatorial solutions
have a special form, and one can do complete enumeration over solutions having that
form. It is not clear if there is a unified way of thinking about such algorithms.

A property of graphs in which λk is large is that the vertex set can be covered by
sets of vertices each inducing an expander. In particular, Oveis-Gharan and Trevisan
[OT14] prove that, in every graph, there exists a partition of the vertices into ` ≤ k
sets (S1 . . . , S`) such that, if we call Gi the subgraph induced by the vertex set Si, we
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have φGi ≥ Ω(λk/k
2).

Meka, Moitra and Srivastava [MMS] prove that one can cover a 1 − ε fraction of
the vertices with t = Oε(k) disjoint sets S1, . . . , St, such that each set Si induces a
subgraph Gi such that φ(Gi) ≥ Ωε(λk/ log k).

3 Graphs in which λk is small

If λk = 0, then the graph has at least k connected components, that is, there is a
partition of the vertices into k subsets such that each of them has conductance zero.
Note also that one of them has size at most n/k. The following definitions allow us
to formalize robust versions of this fact.

Define the order-k conductance of a collection of disjoint sets S1, . . . , Sk as

φk(S1, . . . , Sk) := max
i
φ(Si)

and the order-k conductance of a graph as

φk(G) = min
S1,...,Sk disjoint, nonempty

φk(S1, . . . , Sk)

we can also define the oder-k conductance for partitions of a graph as

φpk(G) = min
S1,...,Sk partition of V

φk(S1, . . . , Sk)

Define also the small-set conductance at density δ of a graph as

SSEδ(G) = min
S⊆V,vol(S)≤δvol(V )

φ(S)

Clearly one has

SSE 1
k
(G) = φk(G)

Note that for k = 2 one has φ2(G) = φp2(G) = φ(G). In general one has

φk(G) ≤ φpk(G) ≤ O(k) · φk(G)

and
φpk(G) ≤ O(ε−1) · φk·(1+ε)(G)
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Arora, Barak and Steurer [ABS10] prove

SSE 1
k
·nγ ≤

√
λk
γO(1)

(3)

Miclo [Mic08] defines the quantity φpk and observes

λk
2
≤ φpk

Lee, Oveis-Gharan and Trevisan [LOT12] prove

φk ≤ O(k2) · λk

which gives the higher-order inequalities conjectured by Miclo

λk
2
≤ φk ≤ O(k2) ·

√
λk

and
λk
2
≤ φpk ≤ O(k3) ·

√
λk

Louis et al. [LRTV12] and Oveis-Gharan, Lee and Trevisan [LOT12] prove that, for
a constant c > 1, we have

φk ≤ O(
√

log k) ·
√
λck

Up to the choice of the constant c, the above upper bound applies also to φpk.

Lee, Oveis-Gharan and Trevisan [LOT12] prove that one can find k disjointly sup-
ported vectors such that each of them has Rayleigh quotient kO(1) · λk. It would be
interesting to show that one can find, say, k/2 disjointly supported vectors such that
each of them has Rayleigh quotient O(

√
log n · λk).

It would be interesting to have an approximation of φk up to a factor dependent only
on a function of the size of the input and of k. Louis and Makarychev [LM14] provide
a bi-criteria approximation as follows: they are able to find disjoint sets S1, . . . , Sk
(or, equivalently, a partition) such that φk(S1, . . . , Sk) ≤ O(

√
log k
√

log n) · φck, for a
constant c > 1.

4 Graphs in which λk is small and λk+1 is large

Tanaka [Tan12] proves that if φk+1 > 3k+1φk, then there is a partition of V into k
sets S1, . . . , Sk such that each set has small conductance, but also each set induces a
subgraph of large expansion, that is, we have

∀i ∈ {1, . . . , k} : φGi ≥ 3−(k+1)φk+1, φ(Si) ≤ 3kφk
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where Gi is the vertex-induced subgraph of G induced by Si. The result is non-
algorithmic. Because of the higher-order Cheeger inequalities mentioned above, a
sufficient condition for φk+1 > 3k+1φk is to have λk+1 > c · k3 · 3k+1

√
λk, for a certain

constant c.

Kannan, Vempala, Vetta [KVV04] argue that a partition of the vertices into a family
of subsets such that each set has small conductance in the graph but induces a
subgraph of large conductance is a good clustering of the graph.

Oveis-Gharan and Trevisan [OT14] show that if φk+1 > (1 + ε)φk, then there is a
partition of the vertices into k subsets (S1, . . . , Sk such that

∀i ∈ {1, . . . , k} : φGi ≥ Ω
( ε
k

)
· φk+1, φ(Si) ≤ kφk

5 Graphs in which λn is large

Recall that we have

λn = max
x∈Rn

∑
{u,v}∈E |xu − xv|2∑

v dvx
2
v

= 2− min
x∈Rn

∑
{u,v}∈E |xu + xv|2∑

v dvx
2
v

Graphs in which λn = 2 are such that there is a connected component (possibly, the
entire graph) which is bipartite. We define a combinatorial quantity which is zero
when the graph has a bipartite connected component, and which, in general, measures
the “distance” from such a situation. Following [Tre09], we call it the bipartiteness
ratio β(G).

For a vector z ∈ {−1, 0, 1}, we define

β(z) =
1

2

∑
{u,v}∈E |zu + zv|∑

v dv|zv|
A more combinatorial view of the above function is that we can view z as defining
a subset S ⊆ V and a bipartition (B, S − B) of S, and the parameter β counts the
number of edges in the subgraph induces by S that are not cut by the partition, and
adds half of the edges leaving S; the quantity is normalized by dividing by the volume
of S.

We have the Cheeger-like inequalities [Tre09] (also later rediscovered by Bauer and
Jost [BJ13]):

2− λ2
2
≤ β(z) ≤

√
2 · (2− λn)
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Liu [Liu14] formulates a higher order Cheeger inequality for λn−k analogous to the
theory described above for λk.

6 Hypergraphs?

It would be excellent to have an algorithmic “spectral” theory for hyper-graphs.
A bottleneck for such a theory is that one of the problems that are addressed by
spectral graph theory is conjectured to be intractable for hypergraphs: given a sparse
random graph, one can efficiently certify that it is “quasirandom” in the sense that
it satisfies the expander mixing lemma via spectral. Certifying quasirandomness of
sparse hypergraphs, however, would contradict Feige’s conjecture on the intractability
of certifying unstatisfiability of sparse random instances of 3SAT.2

Friedman and Wigderson [FW95] define a non-algorithmic spectral theory of hy-
pergraphs. Louis [Lou14] describes an algorithmically treatable spectral theory of
hypergraphs, which includes an analog of Cheeger’s inequality.

References

[ABS10] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms
for unique games and related problems. In Proceedings of the 51st IEEE
Symposium on Foundations of Computer Science, 2010. 3, 4, 6

[AGS13] Sanjeev Arora, Rong Ge, and Ali Kemal Sinop. Towards a better approx-
imation for sparsest cut? In Proceedings of the 54th IEEE Symposium on
Foundations of Computer Science, pages 270–279, 2013. 4

[AL08] Reid Andersen and Kevin. J. Lang. An algorithm for improving graph
partitions. In Proceedings of the 19th ACM-SIAM Symposium on Discrete
Algorithms, page 651?660, 2008. 4

[Alo86] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.
2

[AM85] N. Alon and V.D. Milman. λ1, isoperimetric inequalities for graphs, and
superconcentrators. Journal of Combinatorial Theory, Series B, 38(1):73–
88, 1985. 2, 3

2See http://terrytao.wordpress.com/2008/02/15/luca-trevisan-checking-the-quasirandomness-of-
graphs-and-hypergraphs/ for a discussion of this issue.

8

http://terrytao.wordpress.com/2008/02/15/luca-trevisan-checking-the-quasirandomness-of-graphs-and-hypergraphs/
http://terrytao.wordpress.com/2008/02/15/luca-trevisan-checking-the-quasirandomness-of-graphs-and-hypergraphs/


[ARV04] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows and a√
log n-approximation to sparsest cut. In Proceedings of the 36th ACM

Symposium on Theory of Computing, 2004. 4

[BJ13] F. Bauer and J. Jost. Bipartite and neighborhood graphs and the spectrum
of the normalized graph Laplacian. Comm. Anal. Geom., 21(4):787–845,
2013. 7

[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidef-
inite programming hierarchies via global correlation. In Proceedings of
the 52nd IEEE Symposium on Foundations of Computer Science, pages
472–481, 2011. 3, 4

[Che70] Jeff Cheeger. A lower bound for the smallest eigenvalue of the Laplacian.
In Problems in analysis (Papers dedicated to Salomon Bochner, 1969),
pages 195–199. Princeton Univ. Press, 1970. 3

[Dod84] Jozef Dodziuk. Difference equations, isoperimetric inequality and tran-
sience of certain random walks. Trans. Amer. Math. Soc., 284(2):787–794,
1984. 2

[Fie73] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal, 23(98):298–305, 1973. 3

[FK96] Alan Frieze and Ravi Kannan. The regularity lemma and approximation
schemes for dense problems. In Proceedings of the 37th IEEE Symposium
on Foundations of Computer Science, pages 12–20, 1996. 4

[FW95] Joel Friedman and Avi Wigderson. On the second eigenvalue of hyper-
graphs. Combinatorica, 15(1):43–65, 1995. 8

[GS13] Venkatesan Guruswami and Ali Kemal Sinop. Approximating non-uniform
sparsest cut via generalized spectra. In Proceedings of the 24th ACM-SIAM
Symposium on Discrete Algorithms, pages 295–305, 2013. 4

[KLL+13] Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, Shayan Oveis Gharan, and
Luca Trevisan. Improved Cheeger’s inequality: analysis of spectral par-
titioning algorithms through higher order spectral gap. In Proceedings of
the 45th ACM Symposium on Theory of Computing, pages 11–20, 2013. 4

[Kol10] Alexandra Kolla. Spectral algorithms for unique games. In Proceedings of
the 25th IEEE Conference on Computational Complexity, pages 122–130,
2010. 3

[KVV04] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good,
bad and spectral. Journal of the ACM, 51(3):497–515, 2004. 7

9



[Liu14] Shiping Liu. Multi-way dual cheeger constants and spectral bounds of
graphs. arXiv preprint arXiv:1401.3147, 2014. 8

[LM14] Anand Louis and Konstantin Makarychev. Approximation algorithm for
sparsest k-partitioning. In Proceedings of the 25th ACM-SIAM Symposium
on Discrete Algorithms, pages 1244–1255, 2014. 6

[LOT12] James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multi-way spec-
tral partitioning and higher-order Cheeger inequalities. In Proceedings
of the 44th ACM Symposium on Theory of Computing, pages 1117–1130,
2012. 6

[Lou14] Anand Louis. Hypergraph markov operators, eigenvalues and approxima-
tion algorithms. Technical report, 2014. arXiv:1408.2425. 8

[LRTV12] Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala.
Many sparse cuts via higher eigenvalues. In Proceedings of the 44th ACM
Symposium on Theory of Computing, pages 1131–1140, 2012. 6

[LS88] Gregory F. Lawler and Alan D. Sokal. Bounds on the L2 spectrum for
Markov chains and Markov processes: a generalization of Cheeger’s in-
equality. Trans. Amer. Math. Soc., 309(2):557?580, 1988. 2

[Mic08] Laurent Miclo. On eigenfunctions of Markov processes on trees. Probability
Theory and Related Fields, 142(3-4):561–594, 2008. 6

[MMS] Raghu Meka, Ankur Moitra, and Nikhil Srivastava. Personal communica-
tion. 5

[OT13a] Shayan Oveis Gharan and Luca Trevisan. Improved ARV rounding in
small-set expanders and graphs of bounded threshold rank. Technical
report, 2013. arXiv:1304.2060. 4

[OT13b] Shayan Oveis Gharan and Luca Trevisan. A new regularity lemma
and faster approximation algorithms for low threshold rank graphs. In
APPROX-RANDOM, pages 303–316, 2013. 4

[OT14] Shayan Oveis Gharan and Luca Trevisan. Partitioning into expanders. In
Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms,
2014. 4, 7

[SJ89] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform gener-
ation and rapidly mixing Markov chains. Information and Computation,
82(1):93–133, 1989. 2, 3

10



[ST96] Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works:
Planar graphs and finite element meshes. In Proceedings of the 37th IEEE
Symposium on Foundations of Computer Science, pages 96–105, 1996. 3

[Tan12] Mamoru Tanaka. Higher eigenvalues and partitions of a graph. Technical
report, 2012. arXiv:1112.3434. 6

[Tre09] Luca Trevisan. Max Cut and the smallest eigenvalue. In Proceedings of
the 41st ACM Symposium on Theory of Computing, pages 263–272, 2009.
7

11


	Definitions
	Graphs in which k is large
	Graphs in which k is small
	Graphs in which k is small and k+1 is large
	Graphs in which n is large
	Hypergraphs?

