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We hold these truths to be self-evident

* That algorithms are making and informing decisions all around.
* Medical diagnoses.
* Employment.
* Bail.
* Dating
Driving Cars.
Dating partners.
* Ads we see.
* Content we consume.



We hold these truths to be self-evident

* That algorithms are making and informing decisions all around.

* That there is nothing particularly objective about algorithms.
* Created by humans and relies on design choices.
* In the case of learning, also rely on historic data.
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We hold these truths to be self-evident

* That algorithms are making and informing decisions all around.
* That there is nothing particularly objective about algorithms.
* That concerns of unfair algorithmic discrimination are real.

* That algorithmic fairness is multidisciplinary.

* Philosophy, Law, Economics, Statistics, Social Science, ...
* Policy, Activism, Industry ...



We hold these truths to be self-evident

* That algorithms are making and informing decisions all around.
* That there is nothing particularly objective about algorithms.
* That concerns of unfair algorithmic discrimination are real.

* That algorithmic fairness is multidisciplinary.

e That computer scientists are needed in this multidisciplinary effort,
and as a field we have a moral obligation to contribute.

e Part of the problem - part of the solution.



We hold these truths to be self-evident

* That algorithms are making and informing decisions all around.
* That there is nothing particularly objective about algorithms.
* That concerns of unfair algorithmic discrimination are real.

* That algorithmic fairness is multidisciplinary.

e That computer scientists are needed in this multidisciplinary effort,
and as a field we have a moral obligation to contribute.
* That theory has an important role to play.

* In models, definitions, algorithms etc. (following the examples
of cryptography, privacy, algorithmic game theory, ...)

* A language for discussing fairness
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Problem Setur

* Population ¥
* x € ¢ (arbitrary set of features, often identifies individual)
* y, —outcome (to be predicted, binary for this talk)

*p* (x) - true Prly; |X]

* Learning Algorithm’s Input: a sample of (x,y,).
* Learning Algorithm’s Output: a predictor p
* p(x) — algorithm’s estimate of p™ (x).



Individual Probabilities?

* But what do individual probabilities mean?
* Whatis p” (x)? Non-repeatable experiment ...

e Debated for decades within Statistics.

« Randomness in the environment (Nature)?
* Limited Information.
* Bounded computational resources.

* Scale of algorithmic decision-making calls for revisiting the
guestion from a computational perspective.

e Cannot talk about ML fairness without providing an answer.



How Do Risk-Score Predictors Come to The World?
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What’s The Promise?

* Find ¢ € C minimizing E[f(y, c(x))] for some loss function £.
* What is the implication for individual probabilities?
* What about subgroups?

 Which loss function?



An alternative paradigm:

* Qutcome Indistinguishability: computational perspective on the
meaning of individual probabilities.

* Multicalibration: multi-group fairness — “equivalent to” Ol
Good Karma:

* Omnipredictors: Ol/Multicalibration implies loss minimization on
steroids (answering “which loss function?”)

* Universal Adaptability: Ol/Multicalibration implies an alternative to
learning propensity scores.

 Multicalibration in the wild.



Randomness is in the Eye of the
Beholder
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Computational Indistinguishability

* The area of pseudorandomness (cryptography, complexity
theory, ...) deals with distributions that “look uniform”
(indistinguishable from uniform) although they are not.




Computational Indistinguishability

* The area of pseudorandomness (cryptography, complexity
theory, ...) deals with distributions that “look uniform”
(indistinguishable from uniform) although they are not.




The Role of Computation

* Goal: “approximate” p* from a sample of outcomes {(x,yy )},

* Individual accuracy impossible (what we don’t see we don’t
know), unless we make (unreasonably?) strong assumptions.

* Any “accuracy” depends on computational resources:

If distribution of O’s and 1’s is

computationally indistinguishable
then p =% is irrefutable based on

outcomes:

e Cannot distinguish real “Nature” from “simulated Nature”
operating based on p =7 (even that p very different from p*).



Outcome Indistinguishability

[Dwork,Kim,Reingold,Rothblum,Yona 2021]

* A predictor p gives a generative model for outcomes, where the
probability x sees a positive outcome is p,, .

* Let ¥, be outcomes sampled this way.
e Outcome indistinguishability (one version):

(X, » Vx)

(X, Dx ,¥x ) .
¥ ¥ (XI px Iy) O/ 1




Ol — Some Comments

* Comparing (x,D, , V) With (x, D, , ¥ ). No reference to “real,
individual probabilities” p, just to outcomes y,.

* Definition parametrized by family & of distinguishers
(computational resources) and representation of individuals
(information).

* We cannot empirically refute p (given the information and
computational resources):

 Cannot distinguish true outcomes y, from simulated/generated
outcomes y, .



Ol — Through Multicalibration

* Qutcome Indistinguishability is closely related to an earlier

notion of multicalibration [Hebert Johnson-Kim-Reingold-
Rothblum 18].

* Multicalibration introduced in the context of algorithmic
fairness.

* An alternative to loss minimization with surprising
implications.

* |[n fact, it’s the same alternative.
* Let’s retell this story ...



Group Notions of “Fairness”

* For a few protected groups S, make sure that your predictor
“behaves similarly” on S and on the general population U
(statistical parity, calibration, balance, ...).

e Easy to work with - prevailing notions (unfortunate!).
* \Very weak (easy to abuse, may cause more harm) [DHPRZ’12, ...]

* Are at odds with each other and often at odds with utility
[KMR16,C16].

e Alternative: Individual Fairness (“fairness through awareness”
[DHPRZ’12]).

* Treat similarly situated individuals similarly.




Which Groups? A

Computational Perspective

* Often the weakness of group notions of fairness is that they do
not protect important subgroups

e Advertise burger-joint to vegetarians in the group S you want to
exclude [DHPRZ’12]

* Fairness relies on identifying subgroups that are relevant to the
task at hand (carnivores, qualified job applicants, ...)

* Multi-Group Fairness [Hebert Johnson-Kim-Reingold-Rothblum
18, Kearns-Neel-Roth-Wu 18] offer “fairness protection” to
every (large) set that can be identified given the data and given
computational limitations

* In an exact sense: the best possible



Calibration (Group Notion

* Let S be a protected set. One fear: p downplays fitness of S.

* D is a-calibrated on S if

Vv e |0,1]land S, ={x €S :p(x) = v}
v — Exes,lox]| <@
 (also let a-fraction of predictions be arbitrary)

* A prediction v on average means what it says.

* Extremely weak. For example, p can be fixed on S (to the
expectation) = algorithmic stereotyping.



Multicalibration (Multi-Groug

* Calibration too weak — may discriminate against qualified
members of S.

* Multicalibration: calibration on every (large) set that can be
identified given the data and given computational resources

* For a family of subsets C:
p is a-multicalibrated on C if VT € C

* pis a-calibrated on T
* Think of C as computational bounds (decision trees of depth 5)

* Comes with algorithms (post-processing for multicalibration).
e Efficient if weak agnostic learning of C is efficient.



Accuracy as Fairness?

e Multicalibration aims to address additional discrimination by ML that is not
substantiated in the training data.

* |t can serve as a more refined basis for affirmative action (to address other
kinds of unfairness) and as a criteria to rejecting the data.

* Multi-group notions have been suggested in a variety of other settings,
including to facilitate social engineering.

* Sometimes fairness is rooted in accuracy. Example, Ageism in Health Care:

Certain diseases in elderly patients are underdiagnosed.
* Masked as age-related symptoms.
* Risk: ML algorithm may choose to optimize on younger patients.

Don’t want to overcorrect
* Sometimes those are age-related symptomes.



Ol = Multicalibration

 Calibration tests = general distinguishers

* Multicalibration more relatable to statisticians and ML whereas Ol
more relatable to complexity theoreticians and cryptographers.

e Multicalibration more natural for designing algorithms (can be
viewed as a solution concept to agnostic boosting).

* Ol more amendable to variants — giving the distinguisher more or
less information/power.

e Several works on the relation of Multicalibration and loss
minimization. Multicalibration is unlikely to be obtainable by loss
minimization. Weaker notions are. (Topic for a separate talk.)



Applications of Ol/Multi-Calibration

* Omnipredictors: loss minimization that simultaneously works
for a huge family of loss functions.

* Universal Adaptability: adapting statistical findings to a large
family of target distributions (and alternative to learning
propensity scores).

* Practical basis for learning in a heterogeneous population.

* Much more
* Real-valued labels [Jung-Lee-Pai-Roth-Vohra’20,DKRRY’22]
* Online learning [Gupta-Jung-Noarov-Pai-Roth’21]

* Semi-supervised learning/importance weights [Gopalan-Reingold-
Sharan-Wieder’21]



Omnipredictors

[Gopalan, Tauman-Kalai, Reingold, Sharan, Wieder 2021]

* Given samples from D~(X, 1Y)
e Compute a hypothesis: t: X —- R

- Should this person be tested?
- What Ancace nf - n tn give?

Measures the penalty of t(x) given x,y f(y, t(X))]

o DL Jifferent optimal t.
« C = constant functions . s
 £(y,t) =|ly —tll, learnsthe mean os

« £(y,t) =|ly —t|l; learns the median o o
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Which Loss?

* May not know the correct loss function at time of learning.

* May want to learn for very different loss functions (daily aspirin vs.
surgery).

* May want to work for future loss functions (a future medical
intervention).

* If we learned true probabilities p* (x) then, for arbitrary
(somewhat nice) loss function, easy to compute optimal action.

* Omnipredictors obtain the same for a wide set of loss functions!
* Multicalibration -> omnipredictors (compared with the class C).

* Related work on multi-group loss minimization [Rothblum-Yona’21]



Universal Adaptability

[Kim, Kern, Goldwasser, Kreuter, Reingold 2021]

 Stanford Hospital conducts an experiment (e.g., success rate of a
health policy).
* Can Princeton Hospital rely on this study?

* Assume no unobserved confounders: Pr (Y=1|X=x), is the same
in Stanford and in Princeton.

* The distribution of patients in Stanford (source) is different than in
Princeton (target).
» Subpopulations may be over/under-represented.

* If subpopulations somewhat represented, there is a chance



Propensity Score Weig

* Propensity score = ratio in probability that individual x appears in
source (Stanford) and target (Princeton).

e Obtain unlabeled samples from source and target.
* Learn propensity score g from a class C.

* Reweight samples by g.

e Estimate Y on reweighted samples.

* Need unlabeled samples from target when training. Realistic?

* May want to apply the Stanford study to numerous other
hospitals around the world.

* May want to apply the Stanford study to Stanford in 5 years.



Universal Adaptation?

* Intuition: if estimator learned in Stanford is multicalibrated it will
directly apply for a target distributions that weigh those
subpopulations differently.

* Provable: if g comes from C then C-multicalibration works as well
as propensity scoring.
* without a need for samples from target (needed only in
inference time)

e without a need to learn the propensity scores.

* Experiments: competitive and at times better performance (even
when the propensity scores not in class).




Subpopulation miscalibration —
an empirical evaluation of the problem

and possible solution

Noam Barda*12, Noa Dagan*!:3, Guy N. Rothblum?#, Gal Yona?,
Eitan Bachmat3, Philip Greenland>, Morton Leibowitz!, Ran Balicer!2

1Clalit Research Institute, Clalit Health Services

2 Faculty of Health Sciences, Ben-Gurion University

3 Department of Computer Science, Ben-Gurion University

* Department of Computer Science and Applied Mathematics, Weizmann Institute of Science
> Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

* Equal contribution

aietegii Clalit Q Ben-Gurion University
MU of the Negev

‘.. ..e... Research
2% nstitute



Calibration within subpopulations before and after applying the fairness algorithm
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COVID-19 Complication Predictions

e Multicalibration was used by Clalit Israel to post-process a
raspatory illness complication predictor into COVID-19
complication predictor based on group statistics in China (when
there were too few cases to train a new predictor).

* In retrospect — quite successful.

* In heterogeneous populations, sometimes, fairness can promote
accuracy/utility as it helps identify untapped potential/
unaccounted for risks.

* This pace of transfer from theory to practice is exciting and scary!



Partin hts

* Algorithmic Fairness is both important and scientifically exciting.

* Multi-group fairness and particularly multicalibration gives
meaningful fairness guarantees, and practical benefits.

e Qutcome indistinguishability — computational perspective on the
meaning of individual probabilities a |la scientific method.

e Scientific and also practical implications. In particular — alternative
to central paradigms on loss minimization and propensity scoring.



