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We hold these truths to be self-evident

• That algorithms are making and informing decisions all around. 
• Medical diagnoses.
• Employment.
• Bail.
• Dating
• Driving Cars.
• Dating partners.
• Ads we see.
• Content we consume.
• ….



We hold these truths to be self-evident

• That algorithms are making and informing decisions all around.
• That there is nothing particularly objective about algorithms.
• Created by humans and relies on design choices.  
• In the case of learning, also rely on historic data.
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We hold these truths to be self-evident

• That algorithms are making and informing decisions all around.
• That there is nothing particularly objective about algorithms.
• That concerns of unfair algorithmic discrimination are real.
• That algorithmic fairness is multidisciplinary.
• Philosophy, Law, Economics, Statistics, Social Science, …
• Policy, Activism, Industry …



We hold these truths to be self-evident

• That algorithms are making and informing decisions all around.
• That there is nothing particularly objective about algorithms.
• That concerns of unfair algorithmic discrimination are real.
• That algorithmic fairness is multidisciplinary.
• That computer scientists are needed in this multidisciplinary effort, 

and as a field we have a moral obligation to contribute.
• Part of the problem - part of the solution.



We hold these truths to be self-evident

• That algorithms are making and informing decisions all around.
• That there is nothing particularly objective about algorithms.
• That concerns of unfair algorithmic discrimination are real.
• That algorithmic fairness is multidisciplinary.
• That computer scientists are needed in this multidisciplinary effort, 

and as a field we have a moral obligation to contribute.
• That theory has an important role to play.

• In models, definitions, algorithms etc. (following the examples 
of cryptography, privacy, algorithmic game theory, …)

• A language for discussing fairness 



Risk Scores

Probability of heart 
attack in 10 years

Probability click on this 
article

Probability repay the 
loan



Problem Setup
• Population c
• x Î c (arbitrary set of features, often identifies individual)
• 𝑦!∗ – outcome (to be predicted, binary for this talk)
• 𝑝∗ (𝑥) - true Pr[𝑦!∗|x]

• Learning Algorithm’s Input: a sample of (x,𝑦!∗). 
• Learning Algorithm’s Output: a predictor &𝑝

• &𝑝(𝑥) – algorithm’s estimate of 𝑝∗ (𝑥).



Individual Probabilities?

• But what do individual probabilities mean? 
• What is 𝑝∗ (𝑥)? Non-repeatable experiment …

• Debated for decades within Statistics. 
• Randomness in the environment (Nature)?

• Limited Information.
• Bounded computational resources. 

• Scale of algorithmic decision-making calls for revisiting the 
question from a computational perspective.

• Cannot talk about ML fairness without providing an answer.



How Do Risk-Score Predictors Come to The World?
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attack in 10 years
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What’s The Promise?

• Find 𝑐 ∈ 𝐶 minimizing 𝐸 ℓ 𝑦, 𝑐 𝑥 for some loss function ℓ.
• What is the implication for individual probabilities? 
• What about subgroups?
----------------------------------
• Which loss function?



Plan
An alternative paradigm:
• Outcome Indistinguishability: computational perspective on the 

meaning of individual probabilities.
• Multicalibration: multi-group fairness – “equivalent to” OI
Good Karma:
• Omnipredictors: OI/Multicalibration implies loss minimization on 

steroids (answering “which loss function?”)
• Universal Adaptability: OI/Multicalibration implies an alternative to 

learning propensity scores.
• Multicalibration in the wild. 



Randomness is in the Eye of the 
Beholder

p* = ½

p* = 0 or1

ã Wigderson



Computational Indistinguishability
• The area of pseudorandomness (cryptography, complexity 

theory, …) deals with distributions that “look uniform” 
(indistinguishable from uniform) although they are not.  
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The Role of Computation
• Goal: “approximate” p* from a sample of outcomes {(x,𝑦!∗)}x
• Individual accuracy impossible (what we don’t see we don’t 

know), unless we make (unreasonably?) strong assumptions.
• Any “accuracy” depends on computational resources:

• Cannot distinguish real “Nature” from “simulated Nature” 
operating based on &𝑝 º ½ (even that &𝑝 very different from p*). 
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p* If distribution of 0’s and 1’s is 

computationally indistinguishable 
then &𝑝 º ½ is irrefutable based on 
outcomes:



Outcome Indistinguishability 
[Dwork,Kim,Reingold,Rothblum,Yona 2021]

• A predictor &𝑝 gives a generative model for outcomes, where the 
probability 𝑥 sees a positive outcome is &𝑝! .

• Let &y! be outcomes sampled this way.
• Outcome indistinguishability (one version):

(x, &𝑝! ,&y! )

(x, &𝑝! , 𝑦!∗)

0 / 1(x, &𝑝! ,y)

ÎA



OI – Some Comments
• Comparing (x, &𝑝! , 𝑦!∗) with (x, &𝑝! , &y! ). No reference to “real, 

individual probabilities” 𝑝!∗ just to outcomes 𝑦!∗. 
• Definition parametrized by family A of distinguishers 

(computational resources) and representation of individuals 
(information). 

• We cannot empirically refute &𝑝 (given the information and 
computational resources):

• Cannot distinguish true outcomes 𝑦!∗ from simulated/generated 
outcomes &y! .



OI – Through Multicalibration
• Outcome Indistinguishability is closely related to an earlier 

notion of multicalibration [Hebert Johnson-Kim-Reingold-
Rothblum 18].
•Multicalibration introduced in the context of algorithmic 

fairness.
• An alternative to loss minimization with surprising 

implications. 
• In fact, it’s the same alternative.

• Let’s retell this story …



Group Notions of “Fairness”
• For a few protected groups S, make sure that your predictor  

“behaves similarly” on S and on the general population U
(statistical parity, calibration, balance, …).

• Easy to work with - prevailing notions (unfortunate!).
• Very weak (easy to abuse, may cause more harm) [DHPRZ’12, …] 
• Are at odds with each other and often at odds with utility 

[KMR16,C16]. 
• Alternative: Individual Fairness (“fairness through awareness” 

[DHPRZ’12]).
• Treat similarly situated individuals similarly. 



Which Groups? A 
Computational Perspective

• Often the weakness of group notions of fairness is that they do 
not protect important subgroups
• Advertise burger-joint to vegetarians in the group S you want to 

exclude [DHPRZ’12]

• Fairness relies on identifying subgroups that are relevant to the 
task at hand (carnivores, qualified job applicants, …)

• Multi-Group Fairness [Hebert Johnson-Kim-Reingold-Rothblum 
18, Kearns-Neel-Roth-Wu 18] offer “fairness protection” to 
every (large) set that can be identified given the data and given 
computational limitations

• In an exact sense: the best possible



Calibration (Group Notion)
• Let S be a protected set. One fear: &𝑝 downplays fitness of S.

• &𝑝 is a-calibrated on S if 
"𝑣 ∈ [0,1] and 𝑆# = {𝑥 ∈ 𝑆 ∶ &𝑝(𝑥) = 𝑣}
• 𝑣 − 𝐸!∈#! 𝑜!

∗ £ 𝛼
• (also let a-fraction of predictions be arbitrary)

• A prediction 𝑣 on average means what it says.
• Extremely weak. For example, &𝑝 can be fixed on S (to the 

expectation) = algorithmic stereotyping.



Multicalibration (Multi-Group)
• Calibration too weak – may discriminate against qualified 

members of S. 
• Multicalibration: calibration on every (large) set that can be 

identified given the data and given computational resources
• For a family of subsets 𝐶:
&𝑝 is a-multicalibrated on 𝐶 if "𝑇 ∈ 𝐶
• &𝑝 is a-calibrated on 𝑇

• Think of 𝐶 as computational bounds (decision trees of depth 5)
• Comes with algorithms (post-processing for multicalibration).

• Efficient if weak agnostic learning of 𝐶 is efficient.



Accuracy as Fairness?
• Multicalibration aims to address additional discrimination by ML that is not 

substantiated in the training data.
• It can serve as a more refined basis for affirmative action (to address other 

kinds of unfairness) and as a criteria to rejecting the data.
• Multi-group notions have been suggested in a variety of other settings, 

including to facilitate social engineering.
• Sometimes fairness is rooted in accuracy. Example, Ageism in Health Care:

Certain diseases in elderly patients are underdiagnosed. 
• Masked as age-related symptoms.
• Risk: ML algorithm may choose to optimize on younger patients.

Don’t want to overcorrect
• Sometimes those are age-related symptoms.



OI @ Multicalibration
• Calibration tests @ general distinguishers
• Multicalibration more relatable to statisticians and ML whereas OI 

more relatable to complexity theoreticians and cryptographers.
• Multicalibration more natural for designing algorithms (can be 

viewed as a solution concept to agnostic boosting).
• OI more amendable to variants – giving the distinguisher more or 

less information/power. 
• Several works on the relation of Multicalibration and loss 

minimization. Multicalibration is unlikely to be obtainable by loss 
minimization. Weaker notions are. (Topic for a separate talk.)



Applications of OI/Multi-Calibration
• Omnipredictors: loss minimization that simultaneously works 

for a huge family of loss functions.
• Universal Adaptability: adapting statistical findings to a large 

family of target distributions (and alternative to learning 
propensity scores).

• Practical basis for learning in a heterogeneous population.
• Much more
• Real-valued labels [Jung-Lee-Pai-Roth-Vohra’20,DKRRY’22]
• Online learning [Gupta-Jung-Noarov-Pai-Roth’21]
• Semi-supervised learning/importance weights [Gopalan-Reingold-

Sharan-Wieder’21]
• …



Omnipredictors
[Gopalan, Tauman-Kalai, Reingold, Sharan, Wieder 2021]

• Given samples from  𝒟~(𝒳,𝒴)
• Compute a hypothesis : 𝑡:𝒳 → ℝ
• Loss function ℓ 𝑦, 𝑡 𝑥
• Minimize expected loss ℓ 𝑡 = 𝐸𝒟 ℓ 𝑦, 𝑡 𝑥
• Different loss functions may imply different optimal t.

- Should this person be tested?
- What dosage of medication to give?

Measures the penalty of 𝑡(𝑥) given 𝑥, 𝑦
ex: 𝑡 𝑥 − 𝑦 !



Which Loss?
• May not know the correct loss function at time of learning.
• May want to learn for very different loss functions (daily aspirin vs. 

surgery).
• May want to work for future loss functions (a future medical 

intervention). 
• If we learned true probabilities 𝑝∗ (𝑥) then, for arbitrary 

(somewhat nice) loss function, easy to compute optimal action.
• Omnipredictors obtain the same for a wide set of loss functions!
• Multicalibration -> omnipredictors (compared with the class C).
• Related work on multi-group loss minimization [Rothblum-Yona’21]



Universal Adaptability
[Kim, Kern, Goldwasser, Kreuter, Reingold 2021]

• Stanford Hospital conducts an experiment (e.g., success rate of a 
health policy). 
• Can Princeton Hospital rely on this study? 

• Assume no unobserved confounders: Pr (𝑌=1│𝑋=𝑥), is the same 
in Stanford and in Princeton. 

• The distribution of patients in Stanford (source) is different than in 
Princeton (target). 

• Subpopulations may be over/under-represented.
• If subpopulations somewhat represented, there is a chance



Propensity Score Weighting
• Propensity score = ratio in probability that individual x appears in 

source (Stanford) and target (Princeton). 
• Obtain unlabeled samples from source and target.
• Learn propensity score g from a class C.
• Reweight samples by g.
• Estimate Y on reweighted samples.
• Need unlabeled samples from target when training. Realistic?

• May want to apply the Stanford study to numerous other 
hospitals around the world.

• May want to apply the Stanford study to Stanford in 5 years.



Universal Adaptation? 
• Intuition: if estimator learned in Stanford is multicalibrated it will 

directly apply for a target distributions that weigh those 
subpopulations differently.

• Provable: if g comes from C then C-multicalibration works as well 
as propensity scoring. 

• without a need for samples from target (needed only in 
inference time) 

• without a need to learn the propensity scores.
• Experiments: competitive and at times better performance (even 

when the propensity scores not in class).



Noam Barda*1,2, Noa Dagan*1,3, Guy N. Rothblum4, Gal Yona4, 
Eitan Bachmat3, Philip Greenland5, Morton Leibowitz1, Ran Balicer1,2

1Clalit Research Institute, Clalit Health Services
2 Faculty of Health Sciences, Ben-Gurion University
3 Department of Computer Science, Ben-Gurion University
4 Department of Computer Science and Applied Mathematics, Weizmann Institute of Science
5 Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
* Equal contribution

Subpopulation miscalibration –
an empirical evaluation of the problem 
and possible solution



Entire 
population

A subpopulation of 
Caucasian females, 
50-59 years of age, 

of low socioeconomic 
status and a history of 

immigration

Calibration within subpopulations before and after applying the fairness algorithm



COVID-19 Complication Predictions
• Multicalibration was used by Clalit Israel to post-process a 

raspatory illness complication predictor into COVID-19 
complication predictor based on group statistics in China (when 
there were too few cases to train a new predictor).

• In retrospect – quite successful.
• In heterogeneous populations, sometimes, fairness can promote 

accuracy/utility as it helps identify untapped potential/ 
unaccounted for risks.

• This pace of transfer from theory to practice is exciting and scary!



Parting Thoughts
• Algorithmic Fairness is both important and scientifically exciting. 
• Multi-group fairness and particularly multicalibration gives 

meaningful fairness guarantees, and practical benefits.
• Outcome indistinguishability – computational perspective on the 

meaning of individual probabilities a la scientific method.
• Scientific and also practical implications. In particular – alternative 

to central paradigms on loss minimization and propensity scoring.


