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Lecture 18

In which we present an algebraic construction of expanders.

1 The Marguli-Gabber-Galil Expanders

We present a construction of expander graphs due to Margulis, which was the first
explicit construction of expanders, and its analysis due to Gabber and Galil. The
analysis presented here includes later simplifications, and it follows an exposition of
James Lee.

For every n, we construct graphs with n2 vertices, and we think of the vertex set as
Zn × Zn, the group of pairs from {0, . . . , n − 1} × {0, . . . , n − 1} where the group
operation is coordinate-wise addition modulo n.

Define the functions S(a, b) := (a, a+ b) and T (a, b) := (a+ b, b), where all operations
are modulo n. Then the graph Gn(Vn, En) has vertex set Vn := (Z/nZ× Z/nZ) and
the vertex (a, b) is connected to the vertices

(a+ 1, b), (a− 1, b), (a, b+ 1), (a, b− 1), S(a, b), S−1(a, b), T (a, b), T−1(a, b)

so that Gn is an 8-regular graph. (The graph has parallel edges and self-loops.)

We will prove that there is a constant c > 0 such that λ2(Gn) ≥ c for every n.

The analysis will be in four steps, and it will refer to certain infinite “graphs.”

We define an infinite family of graphs Rn, such that the vertex set of Rn is (R/nZ×
R/nZ), that is, every vertex of Rn is a pair (x, y), where 0 ≤ x < n and 0 ≤ y < n,
and we think of x and y as elements of the group R/nZ in which we do addition
modulo n. Every vertex of Rn is connected to the vertices

S(x, y), S−1(x, y), T (x, y), T−1(x, y)

and is 4-regular. For each of these graphs, we will define a “spectral gap” λ2(Rn);
we put “spectral gap” in quotes because, although it is actually the second smallest
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eigenvalue of a Laplacian operator, we will define it purely formally as the minimum
of a certain optimization problem.

We will also define the graph Z, whose vertex set is Z × Z − {(0, 0}, and such that
each vertex (a, b) is connected to

S(a, b), S−1(a, b), T (a, b), T−1(a, b)

so that Z is also 4-regular. We will define a “spectral gap” λ1(Z), again purely
formally as the infimum of a certain expression, although it is the infimum of the
spectrum of a certain Laplacian operator. We will also define an “edge expansion”
φ(Z) of Z.

The proof of the expansion of Gn will proceed by establishing the following four facts:

1. λ2(Gn) ≥ 1
3
λ2(Rn)

2. λ2(Rn) ≥ λ1(Z)

3. φ(Z) ≤
√

2λ1(Z)

4. φ(Z) ≥ 1
7

The first step will be a discretization argument, showing that a test vector of small
Rayleigh quotient for Gn can be turned into a test function of small Rayleigh quotient
for Rn. The second step is the most interesting and unexpected part of the proof; we
will not spoil the surprise of how it works. The third step is proved the same way as
Cheeger’s inequality. The fourth step is just a careful case analysis.

2 First Step: The Continuous Graph Rn

Let `2([0, n)2) be set of functions f : [0, n)2 → R such that
∫

[0,n)2
(f(x, y))2dxdy is

well defined and finite. Then we define the following quantity, that we think of as the
spectral gap of Rn:

λ2(Rn) := inf
f∈`2([0,n)2) :

∫
[0,n)2 f=0

∫
[0,n)2

|f(x, y)− f(S(x, y))|2 + |f(x, y)− f(T (x, y))|2dxdy

4
∫

[0,n)2
(f(x, y))2dxdy

We could define a Laplacian operator and show that the above quantity is indeed the
second smallest eigenvalue, but it will not be necessary for our proof.

We have the following bound.
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Theorem 1 λ2(Gn) ≥ 1
3
· λ2(Rn).

Proof: Let f be the function such that

λ2(G) =

∑
c∈Z2

n
|f(c)− f(S(c))|2 + |f(c)− f(T (c))|2 + |f(c)− f(c+ (0, 1))|2 + |f(c)− f(c+ (1, 0))|2

8
∑

c∈Z2
n
f 2(c)

For a point (x, y) ∈ [0, n)2, define bx, yc := (bxc, byc). We extend f to a function
f̃ : [0, n)2 → R by defining

f̃(z) := f(bzc)

This means that we tile the square [0, n)2 into unit squares whose corners are integer-
coordinate, and that f̃ is constant on each unit square, and it equals the value of f
at the left-bottom corner of the square.

It is immediate to see that ∫
[0,n)2

f̃ 2(z)dz =
∑
c∈Z2

n

f 2(c)

and so, up to a factor of 2, the denominator of the Rayleigh quotient of f is the same
as the denominator of the Rayleigh quotient of f̃ .

It remains to bound the numerators.

Observe that for every z ∈ [0, 1)2, we have that bS(z)c equals either S(bzc) or S(bzc)+
(0, 1), and that floor(T (z)) equals either T (bzc) or T (bzc) + (1, 0). The numerator
of the Rayleigh quotient of f̃ is

∑
c=(a,b)∈Z2

n

∫
[a,a+1)×[b,b+1)

|f̃(z)− f̃(S(z))|2 + |f̃(z)− f̃(T (z))|2dz

=
1

2

∑
c∈Z2

n

|f(c)−f(S(c))|2+|f(c)−f(S(c)+(0, 1))|2+|f(c)−f(T (c))|2+|f(c)−f(T (c)+(1, 0))|2

because for a (x, y) randomly chosen in the square [a, a + 1) × [b, b + 1), there is
probability 1/2 that bx+yc = bxc+byc and probability 1/2 that bx+yc = bxc+byc+1.

Now we can use the “triangle inequality”

|α− β|2 ≤ 2|α− γ|2 + 2|γ − β|2
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to bound the above quantity

≤ 1

2

∑
c∈Z2

n

|f(c)− f(S(c))|2+

2|f(c)− f(c+ (0, 1))|2 + 2|f(c+ (0, 1))− f(S(c) + (0, 1))|2+
|f(c)− f(T (c))|2+
2|f(c)− f(c+ (1, 0))|2 + 2|f(c+ (1, 0))− f(T (c) + (1, 0))|2

which simplifies to

=
1

2

∑
c∈Z2

n

3|f(c)−f(S(c))|2+3|f(c)−f(T (c))|2+2|f(c)−f(c+(0, 1))|2+2|f(c)−f(c+(1, 0))|2

which is at most 3/2 times the numerator of the Rayleigh quotient of f . �

3 Second Step: The Countable Graph

We now define the graph Z of vertex set Z× Z− {(0, 0)}, where each vertex (a, b) is
connected to

(a, a+ b), (a, a− b), (a+ b, a), (a− b, a)

Note

For a d-regular graph G = (V,E) with an countably infinite set of vectors, define
`2(V ) to be the set of functions f : V → R such that

∑
v∈V f

2(v) is finite, and define
the smallest eigenvalue of G as

λ1(G) := inf
f∈`2(V )

∑
(u,v)∈V |f(u)− f(v)|2

d
∑

v f
2(v)

So that

λ1(Z) := inf
f∈`2(Z×Z−{(0,0)})

∑
a,b |f(a, b)− f(a, a+ b)|2 + |f(a, b)− f(a+ b, a)|2

4
∑

a,b f
2(a, b)

We want to show the following result.

Theorem 2 For every n, λ2(Rn) ≥ λ1(Z).

Proof: This will be the most interesting part of the argument. Let f ∈ `2([0, n)2)
be any function such that

∫
f = 0, we will show that the Fourier transform f̂ of f

has a Rayleigh quotient for Z that is at most the Rayleigh quotient of f for Rn.
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First, we briefly recall the definitions of Fourier transforms. If f : [0, n)2 → R is such
that ∫

z∈[0,n)2
f 2(z)dz <∞

then we can write the linear combination

f(z) =
∑
c∈Z×Z

f̂(c) · χc(z)

where the basis functions are

χa,b(x, y) =
1

n
e2πi·(ax+by)

and the coefficients are

f̂(c) = 〈f, χa,b〉 :=

∫
[0,n)2

f(z)χc(z)dz

The condition
∫
f = 0 gives

f̂(0, 0) = 0

and the Parseval identity gives∑
c 6=(0,0)

f̂ 2(c) =
∑
c

f̂ 2(c) =

∫
f 2(z)dz

and so we have that the denominator of the Rayleigh quotient of f for Rn and of f̂
for Z As usual, the numerator is more complicated.

We can break up the numerator of the Rayleigh quotient of f as∫
s2(z)dz +

∫
t2(z)dz

where s(z) := f(z)− f(S(z)) and t(z) := f(z)− f(T (z)), and we can use Parseval’s
identity to rewrite it as ∑

c

ŝ2(c) + t̂2(c)

=
∑
c

|f̂(c)− (̂f ◦ S)(c)|2 + |f̂(c)− ̂(f ◦ T )(c)|2

The Fourier coefficients of the function (f ◦ S)(z) = f(S(z)) can be computed as

(̂f ◦ S)(a, b) =
1

n

∫
f(S(x, y))e2πi(ax+by)
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=
1

n

∫
f(x, x+ y)e2πi(ax+by)

=
1

n

∫
f(x, y′)e2πi(ax+by′−bx)

= f̂(a− b, b)

where we used the change of variable y′ ← x+ y.

Similarly, ̂(f ◦ T )(a, b) = f̂(a, b− a). This means that the numerator of the Rayleigh
quotient of f for Rn is equal to the numerator of the Rayleigh quotient of f̂ for Z. �

4 Third Step: A Cheeger Inequality for countable

graphs

Define the edge expansion of a d-regular graph G = (V,E) with a countably infinite
set of vertices as

φ(G) = inf
A⊆V,A finite

E(A, Ā)

d|A|

Note that the edge expansion can be zero even if the graph is connected.

Theorem 3 (Cheeger inequality for countable graphs) For every graph G =
(V,E) with a countably infinite set of vertices we have

φ(G) ≤
√

2 · λ1(G)

Proof: This is similar to the proof for finite graphs, with the simplification that we
do not need to worry about constructing a set containing at most half of the vertices.

Let f ∈ `2(Z2) be any function. We will show that φ is at most
√

2r where

r :=

∑
(u,v)∈E |f(u)− f(v)|2

d
∑

v∈V f
2(v)

is the Rayleigh quotient of f .

For every threshold t ≥ tmin := infv∈V f
2(v), define the set St ⊆ V as

St := {v : f 2(v) > t}
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and note that each set is finite because
∑

v f
2(v) is finite. We have, for t > tmin,

φ(G) ≤ E(St, S̄t)

d|St|

and, for all t ≥ 0
|St| · φ(G) ≤ dE(St, S̄t)

Now we compute the integral of the numerator and denominator of the above ex-
pression, and we will find the numerator and denominator of the Rayleigh quotient
r. ∫ ∞

0

|St|dt =
∑
v∈V

∫ ∞
0

If2(v)>tdt =
∑
v∈V

f 2(v)

and ∫ ∞
0

E(St, S̄t)dt =
∑

(u,v)∈E

∫ ∞
0

It between f2(u),f2(v)dt =
∑
(u,v)

|f 2(u)− f 2(v)|

Which means

φ ≤
∑

u,v |f(u)− f(v)|2

d
∑

v f
2(v)

Now we proceed with Cauchy Schwarz:

∑
(u,v)∈E

|f 2(u)− f 2(v)|

=
∑

(u,v)∈E

|f(u)− f(v)| · |f(u) + f(v)|

≤
√ ∑

(u,v)∈E

|f(u)− f(v)|2 ·
√ ∑

(u,v)∈E

|f(u) + f(v)|2

≤
√ ∑

(u,v)∈E

|f(u)− f(v)|2 ·
√ ∑

(u,v)∈E

2f 2(u) + 2f 2(v)

=

√ ∑
(u,v)∈E

|f(u)− f(v)|2 ·
√∑

v∈V

2df(v)2

And we have
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φ ≤

√∑
(u,v)∈E |f(u)− f(v)|2 ·

√
2d

d
√∑

v∈V f(v)2
=
√

2 · r

�

5 Expansion of Z

After all these reductions, we finally come to the point where we need to prove that
something is an expander.

Theorem 4 φ(Z) ≥ 1
7

Proof: Let A be a finite subset of Z× Z− {(0, 0}.
Let A0 be the set of elements of A that have one 0 coordinate. Let A1, A2, A3, A4

be the set of elements of A with nonzero coordinate that belong to the 1st, 2nd, 3rd
and 4th quadrant. (Starting from the quadrant of points having both coordinates
positive, and numbering the remaining ones clockwise.)

Claim 5 E(A− A0, Ā) ≥ |A− A0| = |A| − |A0|.

Proof: Consider the sets S(A1) and T (A1); both S() and T () are permutations,
and so |S(A1)| = |T (A1)| = |A1|. Also, S(A1) and T (A1) are disjoint, because if we
had (a, a+ b) = (a′ + b′, b′) then we would have b = −a′ while all the coordinates are
strictly positive. Finally, S(A1) and T (A1) are also contained in the first quadrant,
and so at least |A1| of the edges leaving A1 lands outside A. We can make a similar
argument in each quadrant, considering the sets S−1(A2) and T−1(A2) in the second
quadrant, the sets S(A3) and T (A3) in the third, and S−1(A4) and T−1(A4) in the
fourth. �

Claim 6 E(A0, Ā) ≥ 4|A0| − 3|A− A0| = 7|A0| − 3|A|

Proof: All the edges that have one endpoint in A0 have the other endpoint outside
of A0. Some of those edges, however, may land in A−A0. Overall, A−A0 can account
for at most 4|A−A0| edges, and we have already computed that at least |A−A0| of
them land into Ā, so A− A0 can absorb at most 3|A− A0| of the outgoing edges of
A0. �

Balancing the two equalities (adding the first plus 1/7 times the second) gives us the
theorem. �
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