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Lecture 12: ARV Analysis

In which we begin the analysis of the ARV rounding algorithm

We want to prove

Lemma 1 (ARV Main Lemma) Let d be a negative-type metric over a set V such
that the points are contained in a unit ball and have constant average distance, that
is,

• there is a vertex z such that d(v, z) ≤ 1 for every v ∈ V

•
∑

u,v∈V d(u, v) ≥ c · |V |2

Then there are sets S, T ⊆ V such that

• |S|, |T | ≥ Ω(|V |);

• for every u ∈ S and every v ∈ T , d(u, v) ≥ 1/O(
√

log |V |)

where the multiplicative factors hidden in the O(·) and Ω(·) notations depend only on
c.

In this lecture, we will show how to reduce the ARV Main Lemma to a statement
of the following form: if {xv}v∈V is a set of vectors such that the metric d(·, ·) in
the ARV Main Lemma can be written as d(u, v) = ||xu − xv||2, and g is a random
Gaussian vectors, and if ` is such that with Ω(1) probability, there are Ω(n) disjoint
pairs u, v such that d(u, v) < ` and |〈g,xu〉 − 〈g,xv〉| ≥ Ω(1), then ` ≥ Ω(1/

√
log n).

We will then prove such a statement in the next lecture.
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1 Bottlenecks

Before beginning with the proof, it will be useful to see that certain variations of the
ARV Main Lemma are false, and that we must use the assumptions of the lemma in
a certain way in order to be able to prove it.

For example, consider the variation of the lemma in which d(·, ·) is an arbitrary semi-
metric, rather than being of negative type. We have the following counterexample.

Fact 2 For every n, there is a metric d(·, ·) over V = {1, . . . , n} such that

• d(i, j) ≤ 1 for all i, j

•
∑

i,j d(i, j) ≥ Ω(n2)

• For every subsets S, T of size Ω(n) we have

min
i∈S,j∈T

d(i, j) ≤ O

(
1

log n

)

We will not provide a full proof but here is a sketch: consider a family Gn = ([n], En)
of constant-degree graphs of constant edge expansion. (We will see later in the course
that such a family exists.) Consider the shortest-path distance dSP (·, ·) on [n]. We
have:

• For every pair i, j, dSP (i, j) ≤ O(log n), because graphs of constant expansion
have logarithmic diameter (another fact that we will prove later in the course)

•
∑

i,j dSP (i, j) ≥ Ω(n2 log n), because, if r is the degree of the graph, then every

vertex has at most rt+1 other vertices at distance at most t from it, and so every
vertex has at least n/2 other vertices at distance Ω(log n) from itself.

• For every subsets S, T of size Ω(n) we have

min
i∈S,j∈T

dSP (i, j) ≤ O(1)

Because, if the edge expansion is Ω(1) and the degree is O(1), then for every set
A of ≤ n/2, there are Ω(|A|) vertices outside A with neighbors in A, and so the
number of vertices at distance at most t from S is at least min{n/2, |S| · 2Ω(t)}.
If |S| ≥ Ω(n), then there is a t = O(1) such that more than n/2 vertices are at
distance ≤ t from S, and the same is true for T , meaning that S and T are at
distance at most 2t = O(1) from each other.
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If divide dSP (·, ·) by the diameter of G, which is O(log n), we obtain a metric that
satisfies the conditions of the Fact above.

This means that we cannot only use the property of d(·, ·) being a semi-metric, but
we have to use the fact that it is of negative type, and we need to use in the proof
the vectors xv such that d(u, v) = ||xv − xu||2.

Fact 2 is tight: using Bourgain’s theorem, or an earlier technique of Leighton and Rao,
if d(·, ·) is a semi-metric over [n] such that maxi,j d(i, j) ≤ 1 and

∑
i,j d(i, j) ≥ Ω(1),

then we can find sets S, T of size Ω(n) such that mini∈S,j∈T d(i, j) ≥ Ω(1/ log n).

Fact 3 For every n, there are vectors x1, . . . ,xn such that

• ||xi − xj||2 ≤ 1 for all i, j

•
∑

i,j ||xi − xj||2 ≥ Ω(n2)

• For every subsets S, T of size Ω(n) we have

min
i∈S,j∈T

||xi − xj||2 ≤ O

(
log log n

log n

)
Here we will not even provide a sketch, but the idea is to use an ε-net of the sphere
of radius 1/2 in dimension O(log n/ log log n), with ε = o(1), and the isoperimeteric
inequality for the sphere.

This means that we need to use the fact that our vectors satisfy the triangle inequali-
ties ||xi−xj||2 ≤ ||xi−xk||2 + ||xk−xj||2. It is also worth noting that for all vectors,
including those of Fact 3, we have

||xi − xj||2 ≤ 2||xi − xk||2 + 2||xk − xj||2

so any argument that proves the ARV Main Lemma will need to use the triangle
inequalities in a way that breaks down if we substitute them with the above “factor-
of-2-triangle-inequalities”.

Fact 3 is also tight, up to the factor of log log n, as we will see later in this lecture.

Finally, we note that the ARV Main Lemma is tight, which means that every step of
its proof will have to involve statements that are tight up to constant factors.

Fact 4 For every n that is a power of two, there is a negative-type metric d(·, ·) over
a set V of size n such that

• d(i, j) ≤ 1 for all i, j

•
∑

i,j d(i, j) ≥ Ω(n2)
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• For every subsets S, T of size Ω(n) we have

min
i∈S,j∈T

d(i, j) ≤ O

(
1√

log n

)
Let n = 2t and V = {0, 1}t. The Hamming distance dH(·, ·) is a negative-type metric
over {0, 1}t (let xv be v itself, and notice that dH(u, v) = ||u− v||2) , and it satisfies

• d(i, j) ≤ t for all i, j

•
∑

i,j d(i, j) ≥ Ω(t · n2)

• For every subsets S, T of size Ω(n) we have

min
i∈S,j∈T

d(i, j) ≤ O(
√
t)

which follows from isoperimetric results on the hypercube that we will not prove

Fact 4 follows by dividing the above metric by t.

2 Gaussian Projections

The tool of Gaussian projections is widely used to analyze semidefinite programs.
Given vectors x1, . . . ,xn ∈ Rm which are solutions to a semidefinite program of
interest, we pick a random Gaussian vector g ∼ Rm, and we consider the projections
Y1, . . . , Ym, where Yi := 〈xi,g〉. The vector g = (g1, . . . , gm) is sampled so that the
coordinates gi are independent standard normal distributions.

We see that each Yi has a Gaussian distribution with expectation 0 and variance
||xi||2, and each difference Yi− Yj has a gaussian distribution with expectation 0 and
variance ||xi − xj||2 = d(i, j).

From standard bounds on Gaussian random variables,

P[|Yi − Yj| ≤ δ
√
d(i, j)] ≤ 2√

2π
δ < δ (1)

P[|Yi − Yj| ≥ t
√
d(i, j)] ≤ 2√

2π
e−t

2/2 < e−t
2/2 (2)

And, setting t =
√

5 log n in (2), we get

P[ ∀i, j. |Yi − Yj|2 ≤ 5 log n · d(i, j)] ≥ 1− o(1) (3)

Our first result is that, with Ω(1) probability, there are Ω(n2) pairs i, j such that
|Yi − Yj| ≥ Ω(1).
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Lemma 5 There are constants c1, σ that depend only on c such that with probability
at least 90%, if we let L be the c1n indices i with smallest Yi, and R be the c1n indices
i with largest Yi, we have

∀i ∈ L.∀j ∈ R |Yi − Yj| ≥ σ

Proof: A standard Markov argument shows that if d(i, j) ≤ 1 for all pairs i, j,
and

∑
i,j d(i, j) ≥ cn2, then there are at least cn2/2 pairs at distance at least c/2.

We argue that, with probability at least 90%, Ω(n2) of those pairs are such that
|Yi − Yj| ≥ Ω(1), which implies the conclusion.

Let F be the set of “far” pairs i, j such that d(i, j) ≥ c/2.

By setting δ = 1
20

in (1), we have for each (i, j) ∈ F

P[|Yi − Yj| ≤
√
c/20
√

2] <
1

20

so, by linearity of expectation,

E[ |{(i, j) ∈ F. |Yi − Yj| ≤
√
c/20
√

2] <
|F |
20

and by Markov inequality

P
[ ∣∣∣∣{(i, j) ∈ F. |Yi − Yj| ≤

√
c

20
√

2

}∣∣∣∣ > |F |2

]
< .1

so, with probability ≥ 90%, there are at least |F |/2 ≥ cn2/4 pairs (i, j) such that

|Yi − Yj| ≥
√
c

20
√

2
.

If L and R are defined as above, and σ = mini∈L, j∈R Yj − Yi, then the number of
pairs i, j at distance > σ is at most

(1− (1− 2c1)2) · n2 ≤ 4c1n
2

and the lemma follows if we set c1 = c/16 and σ =
√
c/20
√

2. �

Note that, with 90% − o(1) probability, we have sets L, R, both of size ≥ c1n, such
that

∀i, j ∈ V. |Yi − Yj|2 ≤ 5 log n · d(i, j)

∀i ∈ L, j ∈ R, Yj − Yi ≥ σ

so that

∀i ∈ L, j ∈ R, d(i, j) ≥ σ2

5 log n
≥ 1

O(log n)

Since we have not used the triangle inequality, the above bound is almost best possible,
given Fact 3 .
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3 The Algorithm to Refine L and R

Consider the following algorithm, given x1, . . . ,xn ∈ Rm satisfying the assumptions
of the Main Lemma, and a parameter `,

• Pick a random gaussian vector g ∼ Rm

• Define Yi := 〈xi,g〉 for i = 1, . . . , n

• Let L be the c1n indices i for which Yi is smallest

• Let R be the c1n indices i for which Yi is largest

• while there is an i ∈ L and j ∈ L such that d(i, j) < `

– remove i from L and j from R

• return L,R

Where c1, σ are the constants (that depend only on c) of Lemma 5. We will prove

Lemma 6 There is a constant c2 (dependent only on c) such that, if we set ` ≤ c2√
logn

,

there is at least a 80% probability that the algorithm removes at most c1n
2

pairs (i, j)
in the ‘while’ loop.

Once we establish the above lemma, we have completed our proof of the ARV Main
Lemma, because, with 70% − o(1) probability, the output of the algorithm is a pair
of sets L,R of size ≥ c1n

2
such that for each i ∈ L and j ∈ R we have d(i, j) ≥ c2√

logn
.

We will prove the contrapositive, that is, if the algorithm has probability at least 20%
of removing at least c1n

2
pairs (i, j) in the ‘while’ loop, then ` ≥ c2/

√
log n.

Call M the set of pairs (i, j) removed by the algorithm (like Y1, . . . , Yn, L and R, M
is a random variable determined by g). If the algorithm has probability at least 20%
of removing at least c1n

2
pairs (i, j) in the ‘while’ loop, then there is a probability at

least 10% that the above happens, and that mini∈L,j∈R |Yi−Yj| ≥ σ. This means that
with probability at least 10% there are cin

2
disjoint pairs (i, j) such that |Yi− Yj| ≥ σ

and d(i, j) ≤ `.

By the above observation, the following lemma implies Lemma 6 and hence the ARV
Main Lemma.

Lemma 7 Let d(·, ·) be a negative-type metric over a set V = {1, . . . , n}, let x1, . . . ,xn ∈
Rm be vectors such that d(i, j) = ||xi − xj||2, let g ∼ Rm be a random vector with a
Gaussian distribution, and let Yi := 〈g,xi〉.
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Suppose that, for constants c′, σ and a parameter `, we have that there is a ≥ 10%
probability that there are at least c′n pairs (i, j) such that d(i, j) ≤ ` and |Yi−Yj| ≥ σ.

Then there is a constant c2, that depends only on c′ and σ, such that

` ≥ c2√
log n

We will prove Lemma 7 in the next lecture.
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