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In which we state an analog of Cheeger’s inequalities for the k-th smallest Laplacian
eigenvalue, and we discuss the connection between this result and the analysis of
spectral partitioning algorithms

1 Review

Let G = (V,E) be a d-regular undirected graph, L its normalized Laplacian, 0 =
λ1 ≤ · · · ≤ λn ≤ 2 be the Laplacian eigenvalues, and φk(G) be the order-k expansion
of G.

We want to prove

φk(G) ≤ O(k3.5) ·
√
λk

We will prove the somewhat stronger result that, given k orthonormal vectors x(1), . . . ,x(k),
we can find k disjointly supported vectors y(1), . . . ,y(k) such that, for every i =
1, . . . , k,

RL(y(i)) ≤ O(k7) · max
j=1,...,k

RL(x(i))

In order to do that, we define the mapping

F (v) := (x(1)v , . . . , x(k)v ) (1)

of vertices to Rk and the normalized distance

dist(u, v) :=

∥∥∥∥ F (u)

||F (u)||
− F (v)

||F (v)||

∥∥∥∥ (2)

between vertices, and we are going to prove the following two lemmas.
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Lemma 1 (Localization) Given t sets A1, . . . , At such that, for every i = 1, . . . , t,∑
v∈Ai
||F (v)||2 ≥ 1

2
and,for every u, v in different sets dist(u, v) ≥ δ, we can construct

t disjointly supported vectors y(1), . . . ,y(t) such that for every i = 1, . . . , t, we have

RL(y(t)) ≤ O(k · δ−2) ·RL(F )

Lemma 2 (Well-Separated Sets) There are k disjoint subsets of vertices A1, . . . , Ak
such that

• For every i = 1, . . . , k,
∑

v∈Ai
||F (v)||2 ≥ 1

2

• For every u and v belonging to different sets, dist(u, v) ≥ Ω(k−3)

Recall that, for a function f : V → Rk the Rayleigh quotient of f is defined as

RL(f) :=

∑
{u,v} ||f(u)− f(v)||2

d
∑

v ||f(v)||2

and, by definition of F , we have

RL(F ) =
1

k

∑
i

RL(x(i))

2 Some Preliminaries

We will prove some simple properties of the embedding F (·) and of the distance
function dist(·, ·).
First, we observe that

∑
v∈V

||F (v)||2 =
∑
v

∑
i

(x(i)v )2 =
∑
i

||x(i)||2 = k

Next, we prove the sense in which F (·) “spreads out” vertices across Rk.

Lemma 3 For every unit vector w ∈ Rk,∑
v∈V

〈F (v),w〉2 = 1
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Proof: Consider the k × n matrix X whose rows are the vectors x(i) and whose
columns are the points F (v). Then we have∑

v∈V

〈F (v),w〉2 = ||XTw||2 = wTXXTw = wTw = 1

where we used the fact that the rows of X are orthogonal and so XXT is the identity.
�

This means that, for every direction, the points F (v) correlate with that direction in
the same way, regardless of the direction itself.

In the proof of the localization lemma, we will make use of the following inequality:
for every two vectors x,y,

| ||x|| − ||y|| | ≤ ||x− y||

which is a consequence of Cauchy-Schwarz:

(||x|| − ||y||)2 = ||x||2 + ||y||2 − 2||x|| · ||y||

≤ ||x||2 + ||y||2 − 2〈x,y〉

= ||x− y||2

3 Localization

In this section we prove Lemma 1.

3.1 Proof Ideas

The basic idea is that we would like to define the vectors y(i) as

y(i)v := 1Ai
(v) · ||F (v)||

The denominator of the Rayleigh quotient of such a vector is, by definition, at least
1/2, and we might hope to upper bound the numerator of the Rayleigh quotient of
y(i) in terms of the numerator of the Rayleigh quotient of F , which is kRL(F ).

Indeed, every edge {u, v} with both endpoints outside of Ai contributes zero to the
numerator of the Rayleigh quotient of y(i), and every edge {u, v} with both endpoints
in Ai contributes
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( ||F (u)|| − ||F (v)|| )2 ≤ ||F (u)− F (v)||2

to the numerator of the Rayleigh quotient of y(i), and the right-hand-side above is
the contribution of the edge to the numerator of the Rayleigh quotient of F .

So far, so good, but the problem comes from edges {u, v} with one endpoint u ∈ Ai
and one endpoint v 6∈ Ai. Such an edge contributes ||F (u)||2 to the Rayleigh quotient
of y(i) and ||F (u) − F (v)||2 to the Rayleigh quotient of F , and the former quantity
could be much larger than the latter. If dist(u, v) is large, however, ||F (u)||2 cannot
be much larger than ||F (u)− F (v)||2, because of the following fact

Lemma 4
||F (v)|| · dist(u, v) ≤ 2||F (u)− F (v)|| (3)

Proof:

||F (v)|| · dist(u, v) = ||F (v)|| ·
∥∥∥∥ F (u)

||F (u)||
− F (v)

||F (v)||

∥∥∥∥
=

∥∥∥∥F (u) · ||F (v)||
||F (u)||

− F (v)

∥∥∥∥
≤
∥∥∥∥F (u) · ||F (v)||

||F (u)||
− F (u)

∥∥∥∥+ ‖F (u)− F (v)‖

=

∥∥∥∥F (u) ·
(
||F (v)||
||F (u)||

− 1

)∥∥∥∥+ ‖F (u)− F (v)‖

= ||F (u)|| ·
∣∣∣∣ ||F (v)||
||F (u)||

− 1

∣∣∣∣+ ‖F (u)− F (v)‖

= | ||F (v)|| − ||F (u)|| |+ ‖F (u)− F (v)‖

≤ 2‖F (u)− F (v)‖

�

We can conclude that the only problem comes from edges {u, v} such that u ∈ Ai,
v 6∈ Ai, and dist(u, v) is small. To deal with such edges, we will modify the definition
of y(i), and use a “smoothed” version of the indicator function of Ai instead of the
actual indicator.
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3.2 Proof

If v is a vertex and A is a set of vertices, we define

dist(v, A) = min
u∈A

dist(v, u)

For each i, we define the following smooth indicator function of Ai:

τi(v) =


1 if v ∈ Ai
0 if dist(v, Ai) ≥ δ

2

1− 2
δ
· dist(v, Ai) otherwise

Notice that the functions τi(·) are disjointly supported: there cannot be a vertex v
such that τi(v) > 0 and τj(v) > 0 for i 6= j, otherwise we would have dist(v, Ai) <

δ
2

and dist(v, Aj) <
δ
2
, contradicting the well-separated condition on the sets Ai.

We define the vectors y(i) as

y(i)v = τi(v) · ||F (v)||

The vectors y(i) are disjointly supported, and it remains to understand their Rayleigh
quotient.

The denominator of the Rayleigh quotient of y(i) is

∑
v∈V

τ 2i (v) · ||F (v)||2 ≥
∑
v∈Ai

||F (v)||2 ≥ 1

2

The contribution of an edge {u, v} to the numerator is the square of

|y(i)v − y(i)u | = | τi(v) · ||F (v)|| − τi(u) · ||F (u)|| |

≤ | τi(v) · ||F (v)|| − τi(v) · ||F (u)|| |+ | τi(v) · ||F (u)|| − τi(u) · ||F (u)|| |

= τi(v) · ||F (v)− F (u)||+ ||F (u)|| · |τi(v)− τi(u)|

≤ ||F (v)− F (u)||+ ||F (u)|| · 2

δ
· dist(v, u)

≤ ||F (v)− F (u)|| ·
(

1 +
4

δ

)
where we used the inequality

|τi(v)− τi(u)| ≤ 2

δ
|dist(v, Ai)− dist(u,Ai)| ≤

2

δ
dist(v, u)
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The numerator of the Rayleigh quotient of y(i) is thus

∑
{u,v}∈E

|y(i)v − y(i)u |2 ≤ O(δ−2)
∑
{u,v}∈E

||F (v)− F (u)||2 = O(δ−2) · kRL(F )

and this proves Lemma 1.

4 Well-Separated Sets

In this section we prove Lemma 2, which follows easily from the following result.

Lemma 5 We can find disjoint sets of vertices T1, . . . , Tm such that

•
∑m

i=1

∑
v∈Ti ||F (v)||2 ≥ k − 1

4

• For every u, v in different sets, dist(u, v) ≥ Ω(k−3)

• For every set Ti,
∑

v∈Ti ||F (v)||2 ≤ 1 + 1
4k

We can derive Lemma 2 from Lemma 5 as follows. Let us call the quantity
∑

v∈A ||F (v)||2
the mass of a set A. Starting from the sets T1, . . . , Tm promised by Lemma 5 we run
the following process: as long as there are two sets both of mass < 1

2
we merge them.

Call A1, . . . , At the sets of mass ≥ 1
2

obtained at the end of this process; in addition,
there may be one more set of mass < 1

2
. Every set has mass ≤ 1 + 1

4k
. This means

that the total mass of the sets is at most 1
2

+ t ·
(
1 + 1

4k

)
≥ k− 1

4
, which implies t ≥ k.

Thus we have found k sets of vertices, each of mass at least 1/2, and such that any
two sets have separation Ω(k−3).

Now we turn to the proof of Lemma 5. We are going to use the fact that, for every
small cone in Rk, the mass of vertices v such that F (v) is in the cone is also small
and, in particular, it can made at most 1 + 1

4k
. We will prove the Lemma by covering

almost all the points F (v) using a collection of well-separated small cones.

We first formalize the above intuition about cones. If R (for region) is a subset of the
unit sphere in Rn, then the diameter of R is

diam(R) := sup
w,z∈R

||w − z||

and the cone generated by R is the set {αw : α ∈ R≥0,w ∈ R} of non-negative scalar
multiples of elements of R. The set of vertices covered by R, denoted V (R) is the set
of vertices v such that F (v) is in the cone generated by R or, equivalently,
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V (R) :=

{
v ∈ V :

F (v)

||F (v)||
∈ R

}
If R has small diameter, then V (R) has small mass.

Lemma 6 For every subset R of the unit sphere,

∑
v∈V (R)

||F (v)||2 ≤
(

1− 1

2
(diam(R))2

)−2

Proof: For every two unit vectors w and z, we have

〈z,w〉 = 1− 1

2
||w − z||2

For every vertex v, call

F̄ (v) :=
F (v)

||F (v)||

Let w be a vector in R. Then we have

1 ≥
∑

v∈V (R)

〈F (v),w〉2

=
∑

v∈V (R)

||F (v)||2 · 〈F̄ (v),w〉2

=
∑

v∈V (R)

||F (v)||2 ·
(

1− 1

2
||F̄ (v)−w||2

)2

≥
∑

v∈V (R)

||F (v)||2 ·
(

1− 1

2
(diam(R))2

)2

�

In particular, if diam(R) ≤ 1√
5k

, then the mass of V (R) is at most(
1− 1

10k

)−2
≤
(

1− 1

5k

)−1
= 1 +

1

5k − 1
≤ 1 +

1

4k

Another observation is that, for every two subsets R1, R2 of the unit sphere,

min
u∈V (R1),v∈V (R2)

dist(u, v) ≥ min
w∈R1,z∈R2

||w − z||
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Our approach will be to find disjoint subsets R1, . . . , Rm of the unit sphere, each of
diameter at most 1/2

√
k, such that the total mass of the sets V (R1), . . . , V (Rm) is at

least k − 1
4

and such that the separation between any two Ri, Rj is at least Ω(k−3).

To do this, we tile Rk with axis-parallel cubes of side L = 1
2k

, which clearly have

diameter at most 1
2
√
k
, and, for every cube C, we define its core C̃ to be a cube with

the same center as C and of side L ·
(
1− 1

4k2

)
. Note two points in the core of two

different cubes have distance at least 1
8k3

. Let now R1, R2, . . . be the intersections of
the cube cores with the unit sphere. Since each Ri is a subset of a core of a cube,
it has diameter at most 1

2
√
k
, and the distance between any two points in different

regions is at least 1
8k3

. We claim that there is a way to choose the location of the
centers of the cubes so that

∑
i

∑
v∈V (Ri)

||F (v)||2 ≥ k − 1
4
.

Let us start by a fixed configuration of the cubes and then apply an axis-parallel
random shift (by adding to each coordinate, a random real in the range [0, L]. Then,
for each fixed point in Rn and, in particular, for each point F̄ (v), the probability that
it falls in the core of a cube after the shift is at least 1 − 1

4k
, so the average mass of

the vertices covered by the regions is at least k− 1
4
, and there must exist a shift that

is at least as good.
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