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In which we state an analog of Cheeger’s inequalities for the k-th smallest Laplacian
eigenvalue, and we discuss the connection between this result and the analysis of
spectral partitioning algorithms

1 Review

Let G = (V, F) be a d-regular undirected graph, L its normalized Laplacian, 0 =
A1 < -+ <\, <2 be the Laplacian eigenvalues, and ¢x(G) be the order-k expansion
of G.

We want to prove

oe(G) < O(E>®) - /A
k)

We will prove the somewhat stronger result that, given k orthonormal vectors x| ... x*),
we can find k disjointly supported vectors y), ..., y*) such that, for every i =
1,...,k,

RL(y(i)) < O(k7) - max RL(x(i))

j=1,....k

In order to do that, we define the mapping

F(v):= (P, ... 2®) (1)

of vertices to R* and the normalized distance

: F(u) F(v)
dist(u,v) := H - (2)
IF@)[ [[F ()]
between vertices, and we are going to prove the following two lemmas.
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Lemma 1 (Localization) Given t sets Ay, ..., A, such that, for everyi=1,..

'7t7

> ven, IFW)|[? > 3 and, for every u, v in different sets dist(u,v) > 0, we can construct

2

t disjointly supported vectors yV, ..., y®) such that for everyi=1,....t, we have

Ri(y") < O(k-67%) - Ri(F)

Lemma 2 (Well-Separated Sets) There are k disjoint subsets of vertices Ay, . ..

such that
o Foreveryi=1,....k > . [[F)]* > :
o For every u and v belonging to different sets, dist(u,v) > Q(k™3)

Recall that, for a function f : V — R¥ the Rayleigh quotient of f is defined as

S @) — S0P
Bll) = = s e

and, by definition of F', we have

RL(F) = % Z Ry (x¥)

2 Some Preliminaries

7Ak

We will prove some simple properties of the embedding F'(-) and of the distance

function dist(-, ).

First, we observe that

S IF@)|P = ZZ@S}W = Z @2 = &

veV

Next, we prove the sense in which F'(-) “spreads out” vertices across R*.

Lemma 3 For every unit vector w € R”,



PrROOF: Consider the k x n matrix X whose rows are the vectors x(* and whose
columns are the points F'(v). Then we have

> (F),w)’ = [ XTw|]’ =w' XX w =w'w=1

veV

where we used the fact that the rows of X are orthogonal and so X X7 is the identity.
OJ

This means that, for every direction, the points F'(v) correlate with that direction in
the same way, regardless of the direction itself.

In the proof of the localization lemma, we will make use of the following inequality:
for every two vectors x,y,

1=yl T < Tk =yli

which is a consequence of Cauchy-Schwarz:

(1=l = [lyID? = [IxI* + [y 11> = 2[1x]] - [ly]|
< Ix[* + Iyl — 2(x,y)
=[x -yl

3 Localization

In this section we prove Lemma 1.

3.1 Proof Ideas

The basic idea is that we would like to define the vectors y*) as

y = 1a,(v) - || F(v)]]

The denominator of the Rayleigh quotient of such a vector is, by definition, at least
1/2, and we might hope to upper bound the numerator of the Rayleigh quotient of
y® in terms of the numerator of the Rayleigh quotient of F', which is kR (F).

Indeed, every edge {u,v} with both endpoints outside of A; contributes zero to the
numerator of the Rayleigh quotient of y®, and every edge {u, v} with both endpoints
in A; contributes



(NFE@ = [IF@)I)? < |1F(u) — F(o)]?
to the numerator of the Rayleigh quotient of y*, and the right-hand-side above is
the contribution of the edge to the numerator of the Rayleigh quotient of F.

So far, so good, but the problem comes from edges {u,v} with one endpoint u € A;
and one endpoint v € A;. Such an edge contributes ||F(u)||* to the Rayleigh quotient
of y@ and ||F(u) — F(v)||? to the Rayleigh quotient of F, and the former quantity

could be much larger than the latter. If dist(u,v) is large, however, ||F(u)||? cannot
be much larger than ||F(u) — F(v)||?, because of the following fact
Lemma 4
1) - dist(u,v) < 2[[F(u) — F(v)]] (3)
PROOF:
[Pl distt o =) H e e |
= (|F(u) - 1EQ)I] v
= o it - 0
< | Fe - AEA - F)| + 17 - £
= e G - #1707
~ IF It = 1]+ 1) = Flo)
= [ IE@I = IF@) |+ | F(u) = Fo)]]
< 2[|F(u) = F(v)
U

We can conclude that the only problem comes from edges {u,v} such that u € A;,
v & A;, and dist(u,v) is small. To deal with such edges, we will modify the definition
of y@, and use a “smoothed” version of the indicator function of A; instead of the
actual indicator.



3.2 Proof
If v is a vertex and A is a set of vertices, we define

dist(v, A) = min dist(v, u)

u€A

For each i, we define the following smooth indicator function of A;:

Ti(v)=4¢ 0 if dist(v, 4;) > 2
1— 2. dist(v,A;) otherwise

Notice that the functions 7;(-) are disjointly supported: there cannot be a vertex v
such that 7;(v) > O and 7;(v) > 0 for i # j, otherwise we would have dist(v, A;) < 2
and dist(v, A;) < contradlctlng the well-separated condition on the sets A;.

We define the vectors y¥ as

w) =7(v) - [|[F(v)]]

The vectors y® are disjointly supported, and it remains to understand their Rayleigh
quotient.

The denominator of the Rayleigh quotient of y® is
> ) [IF@)F =) [IF( ||2>—
veV vEA;

The contribution of an edge {u, v} to the numerator is the square of

8 = u| = | 7i0) - IE @) = 7i(w) - |F ()] |
< [ 7 () - [[E )] = 7a(w) - [[F@)I] [+ | 7av) - [[F ()] = 7a(w) - [[F ()] |
= 7i(v) - [[F'(v) = F(u)|[ + [[E(u)]| - |7:(v) = 7i(w)]

< |[[F(v) = F)|[ + [[F(u)]] - %'dist(v,U)

<I1#e) - Fll- (1+5)

where we used the inequality

2
—dist(v,u)

7(0) — )] < = ldist(v, A9) — dist(u, A)] < -



The numerator of the Rayleigh quotient of y® is thus

Yo W=y P<06) Y IF@) = F)l? = 0(5%) - kRL(F)

{upler {uv}eE

and this proves Lemma 1.

4 Well-Separated Sets

In this section we prove Lemma 2, which follows easily from the following result.

Lemma 5 We can find disjoint sets of vertices Ty, ...,T,, such that

o i e IFOIP =k - §
e For every u, v in different sets, dist(u,v) > Q(k™3)

o For every set Tj, Y cq [|F(0)|[* <1+ 4%

We can derive Lemma 2 from Lemma 5 as follows. Let us call the quantity >, [|F(v)]|?
the mass of a set A. Starting from the sets T}, ...,T,, promised by Lemma 5 we run
the following process: as long as there are two sets both of mass < % we merge them.
Call Ay, ..., A; the sets of mass > % obtained at the end of this process; in addition,
there may be one more set of mass < % Every set has mass < 1+ i. This means
that the total mass of the sets is at most %+t- (1 + ﬁ) > k— }l, which implies t > k.
Thus we have found k sets of vertices, each of mass at least 1/2, and such that any
two sets have separation Q(k™3).

Now we turn to the proof of Lemma 5. We are going to use the fact that, for every
small cone in R¥, the mass of vertices v such that F(v) is in the cone is also small
and, in particular, it can made at most 1+ ﬁ. We will prove the Lemma by covering
almost all the points F'(v) using a collection of well-separated small cones.

We first formalize the above intuition about cones. If R (for region) is a subset of the
unit sphere in R”, then the diameter of R is

diam(R) := sup ||lw — z||

w,ZzER

and the cone generated by R is the set {aw : a € R>g, w € R} of non-negative scalar
multiples of elements of R. The set of vertices covered by R, denoted V(R) is the set
of vertices v such that F'(v) is in the cone generated by R or, equivalently,



oy FW
V(R) .—{ EV.”F(U)HGR}

If R has small diameter, then V' (R) has small mass.

Lemma 6 For every subset R of the unit sphere,

2 L 2 -
S IFOIF < (1 jlaon(®)y)

veV(R)
PROOF: For every two unit vectors w and z, we have
1 2
(2, w) =1 - J|lw 1

For every vertex v, call

= F(v)
F(v) ==
||F'(v)]|
Let w be a vector in B. Then we have
1> Z
veV(R)
= > IF@)] - (F(v),w)?
veEV(R)
1 2
= % PP (1 51F0) - wl?)
veEV(R)
1 2
> % IFwIE- (1 ianw))
veV(R)

O

In particular, if diam(R) < ﬂ’ then the mass of V(R) is at most

1 1 _2< 1 1 _1—1+ ! 1+1
10k - 5k N 5k—1_ 4k

Another observation is that, for every two subsets R;, Ry of the unit sphere,

II)llIl dist(u,v) > min ||w — z||
€

uGV( (RQ) weER,zERs



Our approach will be to find disjoint subsets Ry, ..., R,, of the unit sphere, each of
diameter at most 1/2v/k, such that the total mass of the sets V(Ry), ...,V (R,,) is at
least k — }l and such that the separation between any two R;, R; is at least Q(k™?).

To do this, we tile R* with axis-parallel cubes of side L = ﬁ, which clearly have
diameter at most —~, and, for every cube C, we define its core C to be a cube with

2Vk’
the same center as C and of side L - (1 — ﬁ) Note two points in the core of two
different cubes have distance at least 8%. Let now Ry, Rs,... be the intersections of

the cube cores with the unit sphere. Since each R; is a subset of a core of a cube,

it has diameter at most ﬁ, and the distance between any two points in different

. . 1
regions is at least 553 -

centers of the cubes so that 3=, 3", (g,

We claim that there is a way to choose the location of the
[F@)[I? >k — 5.

Let us start by a fixed configuration of the cubes and then apply an axis-parallel
random shift (by adding to each coordinate, a random real in the range [0, L]. Then,
for each fixed point in R™ and, in particular, for each point F(v), the probability that
it falls in the core of a cube after the shift is at least 1 — ﬁ, so the average mass of
the vertices covered by the regions is at least k& — %l, and there must exist a shift that

is at least as good.
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