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Lecture 6: Cheeger-type Inequalities for λn

In which we state an analog of Cheeger’s inequalities for the k-th smallest Laplacian
eigenvalue, and we discuss the connection between this result and the analysis of
spectral partitioning algorithms

1 Cheeger-type Inequalities for λk

Let G = (V,E) be an undirected d-regular graph, A its adjacency matrix, L = I− 1
d
A

its normalized Laplacian matrix, and 0 = λ1 ≤ · · · ≤ λn ≤ 2 be the eigenvalues of L,
counted with multiplicities and listed in non-decreasing order.

In Handout 2, we proved that λk = 0 if and only if G has at least k connected
components, that is, if and only if there are k disjoint sets S1, . . . , Sk such that
φ(Si) = 0 for i = 1, . . . , k. In this lecture and the next one we will prove a robust
version of this fact.

First we introduce the notion of higher-order expansion. If S1, . . . , Sk is a collection
of disjoint sets, then their order-k expansion is defined as

φk(S1, . . . , Sk) = max
i=1,...,k

φ(Si)

and the order-k expansion of a graph G is

φk(G) = min
S1,...,Sk disjoint

φ(S1, . . . , Sk)

If the edges of a graph represent a relation of similarity of affinity, a low-expansion
collection of sets S1, . . . , Sk represents an interesting notion of clustering, because the
vertices in each set Si are more related to each other than to the rest of the graph.
(Additional properties are desirable in a good clustering, and we will discuss this
later.)

We will prove the following higher-order Cheeger inequalities:

λk
2
≤ φk(G) ≤ O(k3.5)

√
λk
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Stronger upper bounds are known, but the bound above is easier to prove from scratch.
It is known that φk(G) ≤ O(k2)

√
λk and that φk(G) ≤ Oε(

√
log k) ·

√
λ(1+ε)·k.

2 The Easy Direction

As usual, the direction λk
2
≤ φk(G) is the easy one, and it comes from viewing λk as

a sort of continuous relaxation of the problem of minimizing order-k expansion.

Recall that, in order to prove the easy direction of Cheeger’s inequality for λ2, we
proved that if x and y are two orthogonal vectors, both of Rayleigh quotient at most
ε, then the Rayleigh quotient of their sum is at most 2ε. A similar argument could
be made to show that the Rayleigh quotient of the sum of k such vectors is at most
kε. Such results hold for every positive semidefinite matrix.

In the special case of the Laplacian of a graph, and of vectors that are not just
orthogonal but actually disjointly supported, then we can lose only a factor of 2
instead of a factor of k. (The support of a vector is the set of its non-zero coordinates;
two vectors are disjointly supported if their supports are disjoint.)

Lemma 1 Let x(1), . . . ,x(k) be disjointly supported vectors. Then

RL

(∑
i

x(i)

)
≤ 2 · max

i=1,...,k
RL(x(i))

Proof: We just have to prove that, for every edge {u, v},(∑
i

x(i)u − x(i)v

)2

≤ 2
∑
i

(x(i)u − x(i)v )2

The support disjointness implies that there is an index j such that x
(i)
u = 0 for i 6= j,

and an index k such that x
(i)
v = 0 for i 6= k. If j = k, then(∑

i

x(i)u − x(i)v

)2

= (x(j)u − x(j)v )2 =
∑
i

(x(i)u − x(i)v )2

and, if j 6= k, then (∑
i

x(i)u − x(i)v

)2

= (x(j)u − x(k)v )2

≤ 2(x(j)u )2 + 2(x(k)v )2 = 2
∑
i

(x(i)u − x(i)v )2
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and now, using also the fact that disjoint support implies orthogonality, we have

RL

(∑
i

x(i)

)
=

∑
{u,v}

(∑
i x

(i)
u − x(i)v

)2
‖
∑

i x
(i)‖2

≤ 2

∑
i

∑
{u,v}∈E(x

(i)
u − x(i)v )2∑

i ||x(i)||2

≤ 2 max
i=1,...,k

RL(x(i))

�

To finish the proof of the easy direction, let S1, . . . , Sk be sets such that φ(Si) ≤ φ(G)
for every i. Consider the k-dimensional spaceX of linear combinations of the indicator
vectors 1Si

of such sets. The indicator vectors have Rayleigh quotient at most φ(G)
and are disjointly supported, so all their linear combinations have Rayleigh quotient at
most 2φ(G). We have found a k-dimensional space of vectors all of Rayleigh quotient
≤ 2φ(G), which proves λk ≤ 2φ(G).

3 The Difficult Direction: Main Lemma

We will prove the following result

Lemma 2 (Main) Let x(1), . . . ,x(k) be orthonormal vectors. Then we can find dis-
jointly supported non-negative vectors y(1), . . . ,y(k) such that for every i = 1, . . . , k

RL(y(i)) ≤ O(k7) · max
j=1,...,k

RL(x(j))

By applying the Main Lemma to the eigenvectors of λ1, . . . , λk, we get disjointly
supported vectors y(1), . . . ,y(k) all of Rayleigh quotient at most O(k7) · λk. In a
past lecture, we proved that for every non-negative vector y there is a subset S
of its support such that φ(S) ≤

√
2RL(y), and applying this fact to the vectors

y(1), . . . ,y(k) we find k disjoint sets all of expansion at most O(k3.5) ·
√
λk, proving

φk(G) ≤ O(k3.5) ·
√
λk

It is possible, with a more involved proof, to improve the O(k7) factor in the conclusion
of the Main Lemma to O(k6), implying that φk(G) ≤ O(k3) ·

√
λk. A different

approach, which we will not discuss, is used to show that, given k orthonormal vectors,
one can find k disjoint sets S1, . . . , Sk such that, for all i,
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φ(Si) ≤ O(k2) ·
√

max
j=1,...,k

RL(x(j))

implying φk(G) ≤ O(k2) ·
√
λk, which is the best known bound.

Note that, in all the known arguments, the bounds still hold if one replaces λk by the
(possibly smaller) quantity

inf
x(1),...,x(k) orthonormal

max
i=1,...,k

RL(x(i)) (1)

There are graphs, however, in which

φk(G) ≥ Ω(
√
k) ·

√
inf

x(k),...,x(k) orthonormal
max
i=1,...,k

RL(x(i))

so, if a bound of the form φk(G) ≤ (log k)O(1) ·
√
λk is true, then, in order to prove it,

we need to develop new techniques that distinguish between λk and the quantity (1).

4 The Spectral Embedding

Given orthonormal vectors x(1), . . . ,x(k) as in the premise of the Main Lemma, we
define the mapping F : V → Rk

F (v) := (x(1)v , . . . , x(k)v ) (2)

If x(1), . . . ,x(k) are the eigenvectors of the k smallest Laplacian eigenvalues of L, then
F (·) is called the spectral embedding of G into Rk. Spectral clustering algorithms
compute such an embedding, and then find clusters of nodes by clustering the points
{F (v) : v ∈ V } using geometric clustering algorithms, such as k-means, according
either to Euclidian distance, or to the normalized distance function

dist(u, v) :=

∥∥∥∥ F (u)

||F (u)||
− F (v)

||F (v)||

∥∥∥∥ (3)

Our construction of disjointly supported vectors with small Rayleigh quotient will
proceed similarly, by working only with the points {v : F (v)} and forgetting the edge
structure of the graph, and by making use of the above distance function.

To develop some intuition about the spectral mapping, we introduce a notion of
Laplacian Rayleigh quotient for a mapping f : V → Rk, defined, by formally replacing
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absolute values with norms, as

RL(f) :=

∑
{u,v} ||f(u)− f(v)||2

d
∑

v ||f(v)||2

For a mapping F : V → Rk defined in terms of k orthonormal vectors x(i) as in (2),
we have

RL(F ) =

∑
{u,v}

∑
i (x

(i)
u − x(i)v )2

d
∑

v

∑
i(x

(i)
v )2

=

∑
i

∑
{u,v} (x

(i)
u − x(i)v )2

dk

=
1

k

∑
i

∑
{u,v} (x

(i)
u − x(i)v )2

d

=
1

k

∑
i

RL(x(i))

≤ max
i=1,...,k

RL(x(i))

In particular, if x(i) are the eigenvectors of the k smallest Laplacian eigenvalues, then
RL(F ) ≤ λk.

Let us use this setup to prove again that if λk = 0 then G has at least k connected
components. If λk = 0, and we construct F (·) using the eigenvectors of the smallest
Laplacian eigenvalues, then RL(F ) = 0, which means that F (u) = F (v) for every
edge {u, v}, and so F (u) = F (v) for every u and v which are in the same connected
component. Equivalently, if F (u) 6= F (v), then u and v are in different connected
component. For every point in the range {F (v) : v ∈ V } in the range of F (·), let us
consider its pre-image, and let S1, . . . , St be the sets constructed in this way. Clearly,
every set has expansion zero.

How many sets do we have? We claim that the range of F (·) must contain at least
k distinct points, and so t ≥ k and G has at least k connected component. To prove
the claim, consider the matrix X whose rows are the vectors x(i); since the rows of X
are linearly independent, X has full rank k; but if the range of F (·) contained ≤ k−1
distinct points, then X would have ≤ k − 1 distinct columns, and so its rank would
be ≤ k − 1.

Our proof of the higher-order Cheeger inequality will be somewhat analogous to the
previous argument: we will use the fact that, if the Rayleigh quotient of F (·) is small,
then the endpoints of edges {u, v} are typically close, in the sense that the distance
defined in (3) between u and v will typically be small; we will also use the fact that,
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because the x(i) are orthonormal, F (·) tends to “spread out” vertices across Rk, so
that we can find k regions of Rk each containing a large (in a certain weighted sense)
number of vertices, and such that the regions are well-separated according to the
distance (3), implying that there are few edges crossing from one region to the other,
so that the vertices in each region are a non-expanding set. (This is an imprecise
description of the argument, but it conveys the basic intuition.)

5 Overview of the Proof of the Main Lemma

We will break up the proof of the Main Lemma into the following two Lemmas.

Lemma 3 (Well-Separated Sets) Given a function F : V → Rk defined in terms
of k orthonormal vectors as in (2), we can find k disjoint subsets of vertices A1, . . . , Ak
such that

• For every i = 1, . . . , k,
∑

v∈Ai
||F (v)||2 ≥ 1

4

• For every u and v belonging to different sets, dist(u, v) ≥ Ω(k−3)

Lemma 4 (Localization) Given a function F : V → Rk defined in terms of k
orthonormal vectors as in (2), and t sets A1, . . . , At such that, for every i = 1, . . . , t,∑

v∈Ai
||F (v)||2 ≥ 1

4
and,for every u, v in different sets dist(u, v) ≥ δ, we can construct

t disjointly supported vectors y(1), . . . ,y(t) such that for every i = 1, . . . , t, we have

RL(y(t)) ≤ O(k · δ−2) ·RL(F )
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