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Lecture 2

In which we introduce the Laplacian matrix and we prove our first results in spectral
graph theory.

1 The Basics of Spectral Graph Theory

Given an undirected graph G = (V,E), the approach of spectral graph theory is to
associate a symmetric real-valued matrix to G, and to related the eigenvalues of the
matrix to combinatorial properties of G.

For the sake of this lecture, we will restrict ourselves to the case in which G is a
d-regular graph, and we will then see how to extend our results to apply to irregular
graphs as well.

The most natural matrix to associate to G is the adjacency matrix A such that
Ai,j = 1 if {i, j} ∈ E and Ai,j = 0 otherwise. In the second part of the course, in
which we will study expander graphs, the adjacency matrix will indeed be the most
convenient matrix to work with. For the sake of the algorithms that we will analyze in
the first part of the course, however, a slight variation called the normalized Laplacian
is more convenient.

There are a few ways to motivate the definition of the Laplacian. One way is the fol-
lowing: the variational characterization of the eigenvalues of real symmetric matrices
tells us that we can think of the eigenvalues of M as optima of min-max optimization
problems in which vectors x ∈ RV are feasible solutions and the cost function is the
Rayleigh quotient

RM(x) =
xTMx

xTx

We know that every homogeneous polynomial of degree 2 can be realized as xTMx
for some matrix M , and,if we want to study cuts in a graph G = (V,E), it makes
sense to choose a matrix M such that

xTMx =
∑
{u,v}∈E

(xu − xv)2
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because, if x ∈ {0, 1}V is a Boolean vector, representing a cut in the graph, then the
right-hand-side expression above is counting the number of edges that cross the cut,
and so optimization problems with the above cost functions will be relaxations of cut
problems.

Some calculations show that the matrix having such a property is dI − A, which is
called the Laplacian matrix of G. Indeed, we can verify that

xT (dI − A)x =
∑
{u,v}∈E

(xu − xv)2

because both expressions are easily seen to be equal to∑
v

dx2v − 2
∑
{u,v}∈E

xuxv

As we will see in a moment, the eigenvalues of dI−A are in the range [0, 2d], and it is
not hard to see that their sum is dn, so it is convenient to divide the Laplacian matrix
by d so that the range and the average values of the eigenvalues of the resulting matrix
are independent of the degree. (This degree independence will make it possible to
generalize results to the irregular case.)

We have thus reached the following definition.

Definition 1 (Normalized Laplacian) The normalized Laplacian matrix of an undi-
rected d-regular graph G = (V,E) is L := I − 1

d
A.

We shall now prove the following relations between the eigenvalues of L and certain
purely combinatorial properties of G.

Theorem 2 Let G be a d-regular undirected graph, let A be the adjacency matrix of
G, and L = I− 1

d
·A be the normalized Laplacian matrix of G. Let λ1 ≤ λ2 ≤ · · · ≤ λn

be the real eigenvalues of L with multiplicities, in nondecreasing order. Then

1. λ1 = 0 and λn ≤ 2.

2. λk = 0 if and only if G has at least k connected components.

3. λn = 2 if and only if at least one of the connected components of G is bipartite.

Note that the first two properties imply that the multiplicity of 0 as an eigenvalue is
precisely the number of connected components of G.
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Proof: By the characterization of the Rayleigh quotient of L that we established
above, and from the variational characterization of eigenvalues, we have

λ1 = min
x∈Rn−{0}

∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

and so λ1 ≥ 0 because the Rayleigh quotient, being a ratio of sums of squares, is
always non-negative.

If we take 1 = (1, . . . , 1) to be the all-one vector, we see that its Rayleigh quotient
is 0, and so 0 is the smallest eigenvalue of L, with 1 being one of the vectors in the
eigenspace of 1.

We also have the following formula for λk:

λk = min
S k−dimensional subspace of Rn

max
x∈S−{0}

∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

So, if λk = 0, there must exist a k-dimensional space S such that for every x ∈ S
and every {u, v} ∈ E, we have xu = xv, and so xu = xv for every u, v which are
in the same connected component. This means that each x ∈ S must be constant
within each connected component of G, and so the dimension of S can be at most
the number of connected components of G, meaning that G has at least k connected
components.

Conversely, if G has at least k connected components, we can let S be the space of
vectors that are constant within each component, and S is a space of dimension at
least k such that for every element x of S we have∑

{u,v}∈E

(xu − xv)2 = 0

meaning that S is a witness of the fact that λk = 0.

Finally, to study λn, we first note that we have the formula

λn = max
x∈Rn−{0}

xTLx

xTx

from the variational characterization of eigenvalues (see Handout 0).

We also observe that for every vector x ∈ Rn we have

2xTx− xTLx =
1

d

∑
{u,v}∈E

(xu + xv)
2

and so
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λn = 2− min
x∈Rn−{0}

∑
{u,v}∈E(xu + xv)

2

d
∑

v x
2
v

from which it follows that

λn ≤ 2

and if λn = 2 then there must be a non-zero vector x such that∑
{u,v}∈E

(xu + xv)
2 = 0

which means that xu = −xv for every edge (u, v) ∈ E.

Let us now define A := {v : xv > 0} and B := {v : xv < 0}. The set A ∪ B is
non-empty (otherwise we would have x = 0) and is either the entire graph, or else
it is disconnected from the rest of the graph, because otherwise an edge with an
endpoint in A∪B and an endpoint in V − (A∪B) would give a positive contribution
to

∑
{u,v}∈E(xu − xv)2; furthermore, every edge incident on a vertex on A must have

the other endpoint in B, and vice versa. Thus, A ∪ B is a connected component, or
a collection of connected components, of G which is bipartite, with the bipartition
A,B. �
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