
U.C. Berkeley — CS294: Spectral Methods and Expanders Handout 1
Luca Trevisan January 20, 2016

Lecture 1: Introduction

In which we describe what this course is about.

1 Overview

This is class is about applications of linear algebra to graph theory and to graph
algorithms. In the finite-dimensional case, linear algebra deals with vectors and ma-
trices, and with a number of useful concepts and algorithms, such as determinants,
eigenvalues, eigenvectors, and solutions to systems of linear equations.

The application to graph theory and graph algorithms comes from associating, in a
natural way, a matrix to a graph G = (V,E), and then interpreting the above concepts
and algorithms in graph-theoretic language. The most natural representation of a
graph as a matrix is via the |V | × |V | adjacency matrix of a graph, and certain
related matrices, such as the Laplacian and normalized Laplacian matrix will be our
main focus. We can think of |V |-dimensional Boolean vectors as a representing a
partition of the vertices, that is, a cut in the graph, and we can think of arbitrary
vectors as fractional cuts. From this point of view, eigenvalues are the optima of
continuous relaxations of certain cut problems, the corresponding eigenvectors are
optimal solutions, and connections between spectrum and cut structures are given by
rounding algorithms converting fractional solutions into integral ones. Flow problems
are dual to cut problems, so one would expect linear algebraic techniques to be helpful
to find flows in networks: this is the case, via the theory of electrical flows, which can
be found as solutions to linear systems.

The course can be roughly subdivided into three parts: in the first part of the course
we will study spectral graph algorithms, that is, graph algorithms that make use of
eigenvalues and eigenvectors of the normalized Laplacian of the given graph. In the
second part of the course we will look at constructions of expander graphs, and their
applications. In the third part of the course, we will look at fast algorithms for solving
systems of linear equations of the form Lx = b, where L is Laplacian of a graph,
their applications to finding electrical flows, and the applications of electrical flows
to solving the max flow problem.

1

2 Spectral Graph Algorithms

We will study approximation algorithms for the sparsest cut problem, in which one
wants to find a cut (a partition into two sets) of the vertex set of a given graph so
that a minimal number of edges cross the cut compared to the number of pairs of
vertices that are disconnected by the removal of such edges.

This problem is related to estimating the edge expansion of a graph and to find
balanced separators, that is, ways to disconnect a constant fraction of the pairs of
vertices in a graph after removing a minimal number of edges.

Finding balanced separators and sparse cuts arises in clustering problems, in which the
presence of an edge denotes a relation of similarity, and one wants to partition vertices
into few clusters so that, for the most part, vertices in the same cluster are similar
and vertices in different clusters are not. For example, sparse cut approximation
algorithms are used for image segmentation, by reducing the image segmentation
problem to a graph clustering problem in which the vertices are the pixels of the
image and the (weights of the) edges represent similarities between nearby pixels.

Balanced separators are also useful in the design of divide-and-conquer algorithms
for graph problems, in which one finds a small set of edges that disconnects the
graph, recursively solves the problem on the connected components, and then patches
the partial solutions and the edges of the cut, via either exact methods (usually
dynamic programming) or approximate heuristic. The sparsity of the cut determines
the running time of the exact algorithms and the quality of approximation of the
heuristic ones.

We will study a spectral algorithm first proposed by Fiedler in the 1970s, and to put
its analysis into a broader context, we will also study the Leighton-Rao algorithm,
which is based on linear programming, and the Arora-Rao-Vazirani algorithm, which
is based on semidefinite programming. We will see how the three algorithms are based
on conceptually similar continuous relaxations.

Before giving the definition of sparsest cut, it is helpful to consider examples of graphs
that have very sparse cuts, in order to gain intuition.

Suppose that a communication network is shaped as a path, with the vertices rep-
resenting the communicating devices and the edges representing the available links.
The clearly undesirable feature of such a configuration is that the failure of a single
edge can cause the network to be disconnected, and, in particular, the failure of the
middle edge will disconnect half of the vertices from the other half.

This is a situation that can occur in reality. Most of Italian highway traffic is along
the highway that connect Milan to Naples via Bologna, Florence and Rome. The
section between Bologna and Florence goes through relatively high mountain passes,
and snow and ice can cause road closures. When this happens, it is almost impossible

2

to drive between Northern and Southern Italy. Closer to California, I was once driving
from Banff, a mountain resort town in Alberta which hosts a mathematical institute,
back to the US. Suddenly, traffic on Canada’s highway 1 came to a stop. People from
the other cars, after a while, got out of the cars and started hanging out and chatting
on the side of the road. We asked if there was any other way to go in case whatever
accident was ahead of us would cause a long road closure. They said no, this is the
only highway here. Thankfully we started moving again in half an hour or so.

Now, consider a two-dimensional
√
n ×
√
n grid. The removal of an edge cannot

disconnect the graph, and the removal of a constant number of edges can only discon-
nected a constant number of vertices from the rest of the graph, but it is possible to
remove just

√
n edges, a 1/O(

√
n) fraction of the total, and have half of the vertices

be disconnected from the other half.

A k-dimensional hypercube with n = 2k is considerably better connected than a grid,
although it is still possible to remove a vanishingly small fraction of edges (the edges
of a dimension cut, which are a 1/k = 1/ log2 n fraction of the total number of edges)
and disconnect half of the vertices from the other half.

Clearly, the most reliable network layout is the clique; in a clique, if an adversary
wants to disconnect a p fraction of vertices from the rest of the graph, he has to
remove at least a p · (1− p) fraction of edges from the graph.

This property of the clique will be our “gold standard” for reliability. The expansion
and the sparsest cut parameters of a graph measure how worse a graph is compared
with a clique from this point of view.

For simplicity, here we will give definitions that apply only to the case of regular
graphs.

Definition 1 (Edge expansion of a set) Let G = (V,E) be a d-regular graph, and
S ⊆ V a subset of vertices. The edge expansion of S is

φ(S) :=
E(S, V − S)

d|S|

where E(S, V − S) is the number of edges in E that have one endpoint in S and one
endpoint in V − S.

d|S| is a trivial upper bound to the number of edges that can leave S, and so φ(S)
measures how much smaller the actual number of edges is than this upper bound.
We can also think of φ(S) as the probability that, if we pick a random node v in S
and then a random neighbor w of v, the node w happens to be outside of S.

The quantity 1 − φ(S) is the average fraction of neighbors that vertices in S have
within S. For example, if G represents a social network, and S is a subset of users

3

of expansion .3, this means that, on average, the users in S have 70% of their friends
within S.

If (S, V −S) is a cut of the graph, and |S| ≤ |V −S|, then φ(S) is, within a factor of
two, the ratio between the fraction E(S, V −S)/|E| = 2E(S, V −S)/dn of edges that
we have to remove to disconnect S from V − S, and the fraction |S| · |V − S|/

(
n
2

)
of

pairs of vertices that become unreachable if we do so. We define the edge expansion
of a cut as

φ(S, V − S) := max{φ(S), φ(V − S)}

The edge expansion of a graph is the minimum of the edge expansion of all cuts.

Definition 2 (Edge expansion of a graph) Let G = (V,E) be a d-regular graph,
its edge expansion is

φ(G) := min
S:0<|S|<|V |

φ(S, V − S) = min
S:0<|S|≤ |V |

2

φ(S)

If A is the adjacency matrix of a d-regular graph G = (V,E), then the normalized
Laplacian of G is the matrix L := I − 1

d
A. We will prove the Cheeger inequalities:

that if λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of L, counted with multiplicities and
sorted in nondecreasing order, then

λ2
2
≤ φ(G) ≤

√
2λ2

The lower bound φ(G) ≥ λ2
2

follows by using the variational characterization of
eigenvalues to think of λ2 as the optimum of a continuous optimization problem, and
then realizing that, from this point of view, λ2 is actually the optimum of a relaxation
of φ(G).

The upper bound φ(G) ≤
√

2λ2 has a constructive proof, showing that the set SF
returned by Fiedler’s algorithm has size ≤ |V |/2 and satisfies φ(SF) ≤ 2

√
λ2. The

two inequalities, combined, show that φ(SF) ≤ 2
√
φ(G) and provide a (tight) worst-

case analysis of the quality of the cut found by Fiedler-s algorithm, compared with
the optimal cut.

To put this result in a broader context, we will see the Leighton-Rao approxima-
tion algorithm, based on linear programming, which finds a cut of expansion ≤
φ(G) · O(log |V |), and the Arora-Rao-Vazirani algorithm, based on semidefinite pro-
gramming, which finds a cut of expansion ≤ φ(G) ·O(

√
log |V |). The spectral, linear

programming, and semidefinite programming relaxation can all be seen as very re-
lated.

We will then consider combinatorial characterizations, and algorithms for other lapla-
cian eigenvalues.

4

We will prove a “higher order” Cheeger inequality that characterizes λk for k ≥ 2
similarly to how the standard Cheeger inequality characterizes λ2, and the proof will
provide a worst-case analysis of spectral partitioning algorithms similarly to how the
proof of the standard Cheeger inequality provides a worst-case analysis of Fiedler’s
algorithm.

The outcome of these results is that small Laplacian eigenvalues characterize the
presence of sparse cuts in the graph. Analogously, we will show that the value of λn
characterizes large cuts, and the proof a Cheeger-type inequality for λn will lead to
the worst-case analysis of a spectral algorithm for max cut.

3 Constructions and Applications of Expander Graphs

A family of constant-degree expanders is a collection of arbitrarily large graphs, all of
degree O(1) and edge expansion Ω(1). Expanders are useful in several applications,
and a common theme in such applications is that even though they are sparse, they
have some of the “connectivity” properties of a complete graph.

For example, if one removes a o(1) fraction of edges from an expander, one is left
with a connected component that contains a 1− o(1) fraction of vertices.

Lemma 3 Let G = (V,E) be a regular graph of expansion φ. Then, after an ε < φ
fraction of the edges are adversarially removed, the graph has a connected component
that spans at least 1− ε/2φ fraction of the vertices.

Proof: Let d be the degree of G, and let E ′ ⊆ E be an arbitrary subset of ≤
ε|E| = ε · d · |V |/2 edges. Let C1, . . . , Cm be the connected components of the graph
(V,E − E ′), ordered so that |C1| ≥ |C2| ≥ · · · ≥ |Cm|. We want to prove that
|C1| ≥ |V | · (1− 2ε/φ). We have

|E ′| ≥ 1

2

∑
i 6=j

E(Ci, Cj) =
1

2

∑
i

E(Ci, V − Ci)

If |C1| ≤ |V |/2, then we have

|E ′| ≥ 1

2

∑
i

d · φ · |Ci| =
1

2
· d · φ · |V |

but this is impossible if φ > ε.

If |C1| ≥ |V |/2, then define S := C2 ∪ · · · ∪ Cm. We have

|E ′| ≥ E(C1, S) ≥ d · φ · |S|

5

which implies that |S| ≤ ε
2φ
· |V | and so C1 ≥

(
1− ε

2φ

)
· |V |. �

In a d-regular expander, the removal of k edges can cause at most O(k/d) vertices to
be disconnected from the remaining “giant component.” Clearly, it is always possible
to disconnect k/d vertices after removing k edges, so the reliability of an expander is
essentially best possible.

Another way in which expander graphs act similarly to a complete graph is the
following. Suppose that, given a graph G = (V,E), we generate a sequence v1, . . . , vk
by choosing v1 ∈ V uniformly at random and then performing a (k− 1)-step random
walk. If G is a complete graph (in which every vertex has a self-loop), this process
uses k log |V | random bits and generates k uniform and independent random vertices.
In an expander of constant degree, the process uses only log |V |+O(k) random bits,
and the resulting sequence has several of the useful statistical properties of a sequence
generated uniformly at random. Especially in the case in which k is of the order of
log |V |, using O(log |V |) instead of O(log2 |V |) random bits can be a significant saving
in certain application. (Note, in particular, that the sample space has polynomial size
instead of quasi-polynomial size.)

Constructions of constant-degree expanders are useful in a variety of applications,
from the design of data structures, to the derandomization of algorithms, from efficient
cryptographic constructions to being building blocks of more complex quasirandom
objects.

There are two families of approaches to the explicit (efficient) construction of bounded-
degree expanders. One is via algebraic constructions, typically ones in which the ex-
pander is constructed as a Cayley graph of a finite group. Usually these constructions
are easy to describe but rather difficult to analyze. The study of such expanders, and
of the related group properties, has become a very active research program. There are
also combinatorial constructions, which are somewhat more complicated to describe
but considerably simpler to analyze.

4 Mixing time of random walks

If one takes a random walk in a regular graph that is connected and not bipartite,
then, regardless of the starting vertex, the distribution of the t-th step of the walk
is close to the uniform distribution over the vertices, provided that t is large enough.
It is always sufficient for t to be quadratic in the number of vertices; in some graphs,
however, the distribution is near-uniform even when t is just poly-logarithmic, and,

indeed, the time is at most O
(

1
λ2

log |V |
)

, and thus it is at most logarithmic in

expander graphs.

Among other applications, the study of the “mixing time” (the time that it takes to

6

reach the uniform distribution) of random walks has applications to analyzing the
convergence time of certain randomized algorithms.

The design of approximation algorithms for combinatorial counting problems, in which
one wants to count the number of solutions to a given NP-type problem, can be re-
duced to the design of approximately uniform sampling in which one wants to approxi-
mately sample from the set of such solutions. For example, the task of approximately
counting the number of perfect matchings can be reduced to the task of sampling
almost uniformly from the set of perfect matchings of a given graph. One can design
approximate sampling algorithms by starting from an arbitrary solution and then
making a series of random local changes. The behavior of the algorithm then corre-
sponds to performing a random walk in the graph that has a vertex for every possible
solution and an edge for each local change that the algorithm can choose to make.
Although the graph can have an exponential number of vertices in the size of the
problem that we want to solve, it is possible for the approximate sampling algorithm
to run in polynomial time, provided that a random walk in the graph converges to
uniform in time poly-logarithmic in its size.

The study of the mixing time of random walks in graphs is thus a main analysis tool
to bound the running time of approximate sampling algorithms (and, via reductions,
of approximate counting algorithms).

As a way of showing applications of results proved so far, we will show that, because

of Cheeger’s inequality, the mixing time is upper-bounded by O
(

1
φ2

log |V |
)

, and

then we will use the dual of the Leighton-Rao relaxation to show that 1/φ can be
upper-bounded by the congestion of a certain flow problem. We will apply this theory
to the analysis of an algorithm that approximates the number of perfect matchings
in a given dense bipartite graph.

5 Linear Systems, Electrical Flows, and Applica-

tions

In the last part of the course, we will turn to connections between graph theory and a
different aspect of linear algebra, namely the solution of systems of linear equations.
If we have a system of linear equations of the form

Ax = b

we can solve it (or determine that it has no solution) in polynomial time using Gaus-
sian elimination. Sometimes, it is possible to develop faster and more numerically
stable algorithms by thinking of the problem has an optimization, such as, for exam-
ple,

min
x
||Ax− b||

7

for an appropriate choice of norm.

If A is positive definite (that is, all the eigenvalues are strictly positive), then another
way of turning a linear system into an optimization problem is to consider the problem

min
1

2
xTAx− bTx (1)

The problem is strictly convex, because the Hessian of the function f(x) := 1
2
xTAx−

bTx, that is, the matrix of partial second derivatives of f(·), is, at every point, the
matrix A itself, which we assumed to be positive definite.

The strongly convex optimization problem (1) has a unique minimum, achieved at a
point x∗. The gradient of f(·) at a point x, that is, the vector of partial derivates at
x, is ∇f(x) = Ax− b. The gradient has to be equal to the 0 vector at the optimum
x∗, and so we have Ax∗ = b.

If we want to solve the linear system Ax = b, and A is positive definite, then a possible
strategy is to solve the convex optimization problem (1) using gradient descent, or
similar local-search algorithms for convex optimization. The running time of such
algorithms will be determined by the smallest eigenvalue A. In order to deal with
matrix having small eigenvalues, one resorts to preconditioning, which is a technique
that reduces the Ax = b system to a By = b′ system in which B has a larger smallest
eigenvalue. In the interesting special case in which A is the Laplacian matrix of an
undirected graph, the running time is determined by the expansion of the graph, and
preconditioning can be understood in graph-theoretic terms.

(Technically, the Laplacian is not positive definite. What we mean above is that we
are interested in solving an equation of the form Lx = b where L is a Laplacian
matrix, and x is further constrained to be orthogonal to the eigenspace of zero.)

Efficiently solving “Laplacian systems” of the form Lx = b is closely related to the
problem of finding sparsifiers of graphs, and we will see nearly linear time algorithms
for both problems.

One application of finding solutions to systems of the form Lx = b is to find electrical
flows in networks. We will then see how to use fast algorithms for finding electrical
flows and turn them into algorithm for the Max Flow problem.

8

	Overview
	Spectral Graph Algorithms
	Constructions and Applications of Expander Graphs
	Mixing time of random walks
	Linear Systems, Electrical Flows, and Applications

