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Lecture 8

In which we introduce the Leighton-Rao relaxation of sparsest cut.

Let G = (V,E) be an undirected graph. Unlike past lectures, we will not need to
assume that G is regular. We are interested in finding a sparsest cut in G, where the
sparsity of a non-trivial bipartition (S, V − S) of the vertices is

φG(S) :=

1
|E| · Edges(S, V − S)

2
V 2 · |S| · |V − S|

which is the ratio between the fraction of edges that are cut by (S, V − S) and the
fraction of pairs of vertices that are disconnected by the removal of those edges.

Another way to write the sparsity of a cut is as

φG(S) :=
|V |2

2|E|
·
∑

i,j Ai,j|1S(i)− 1S(j)|∑
i,j |1S(i)− 1S(j)|

where A is the adjacency matrix of G and 1S(·) is the indicator function of the set S.

The observation that led us to see 1−λ2 as the optimum of a continuous relaxation of
φ was to observe that |1S(i)−1S(j)| = |1S(i)−1S(j)|2, and then relax the problem by
allowing arbitrary functions x : V → R instead of indicator functions 1S : V → {0, 1}.
The Leighton-Rao relaxation of sparsest cut is obtained using, instead, the following
observation: if, for a set S, we define dS(i, j) := |1S(i) − 1S(j)|, then dS(·, ·) defines
a semi-metric over the set V , because dS is symmetric, dS(i, i) = 0, and the triangle
inequality holds. So we could think about allowing arbitrary semi-metrics in the
expression for φ, and define

LR(G) := min
d : V × V → R
d semi-metric

|V |2

2|E|
·
∑

i,j Ai,jd(i, j)∑
i,j d(i, j)

(1)
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This might seem like such a broad relaxation that there could be graphs on which
LR(G) bears no connection to φ(G). Instead, we will prove the fairly good estimate

LR(G) ≤ φ(G) ≤ O(log |V |) · LR(G) (2)

Furthermore, we will show that LR(G), and an optimal solution d(·, ·) can be com-
puted in polynomial time, and the second inequality above has a constructive proof,
from which we derive a polynomial time O(log |V |)-approximate algorithm for spars-
est cut.

1 Formulating the Leighton-Rao Relaxation as a

Linear Program

The value LR(G) and an optimal d(·, ·) can be computed in polynomial time by
solving the following linear program

minimize
∑

i,j Ai,jdi,j
subject to ∑

i,j di,j = |V |2
2|E|

di,k ≤ di,j + dj,k ∀i, j, k ∈ V
di,j ≥ 0 ∀i ∈ V

(3)

that has a variable di,j for every unordered pair of distinct vertices i, j. Clearly,
every solution to the linear program (3) is also a solution to the right-hand side of
the definition (1) of the Leighton-Rao parameter, with the same cost. Also every
semi-metric can be normalized so that

∑
i,j d(i, j) = |V |2/2|E| by multiplying every

distance by a fixed constant, and the normalization does not change the value of the
right-hand side of (1); after the normalization, the semimetric is a feasible solution
to the linear program (3), with the same cost.

In the rest of this lecture and the next, we will show how to round a solution to (3)
into a cut, achieving the logarithmic approximation promised in (2).

2 An L1 Relaxation of Sparsest Cut

In the Leighton-Rao relaxation, we relax distance functions of the form d(i, j) =
|1S(i) − 1S(j)| to completely arbitrary distance functions. Let us consider an inter-
mediate relaxation, in which we allow distance functions that can be realized by an
embedding of the vertices in an `1 space.
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Recall that, for a vector x ∈ Rn, its `1 norm is defined as ||x||1 :=
∑

i |xi|, and that
this norm makes Rn into a metric space with the `1 distance function

||x− y||1 =
∑
i

|xi − yi|

The distance function d(i, j) = |1S(i) − 1S(j)| is an example of a distance function
that can be realized by mapping each vertex to a real vector, and then defining the
distance between two vertices as the `1 norm of the respective vectors. Of course it
is an extremely restrictive special case, in which the dimension of the vectors is one,
and in which every vertex is actually mapping to either zero or one. Let us consider
the relaxation of sparsest cut to arbitrary `1 mappings, and define

φ′(G) := inf
m,f :V→Rm

|V |2

2|E|
·
∑

i,j Ai,j||f(i)− f(j)||1∑
i,j ||f(i)− f(j)||1

This may seem like another very broad relaxation of sparsest cut, whose optimum
might bear no correlation with the sparsest cut optimum. The following theorem
shows that this is not the case.

Theorem 1 For every graph G, φ(G) = φ′(G).

Furthermore, there is a polynomial time algorithm that, given a mapping f : V → Rm,
finds a cut S such that∑

u,v Au,v|1S(u)− 1S(v)|∑
u,v |1S(u)− 1S(v)|

≤
∑

u,v Au,v||f(u)− f(v)||1∑
u,v ||f(u)− f(v)||1

(4)

Proof: We use ideas that have already come up in the proof the difficult direction
of Cheeger’s inequality. First, we note that for every nonnegative reals a1, . . . , am and
positive reals b1, . . . , bm we have

a1 + · · · am
b1 + · · · bm

≥ min
i

ai
bi

(5)

as can be seen by noting that

∑
j

aj =
∑
j

bj ·
aj
bj
≥
(

min
i

ai
bi

)
·
∑
j

bj

Let fi(v) be the i-th coordinate of the vector f(v), thus f(v) = (f1(v), . . . , fm(v)).
Then we can decompose the right-hand side of (4) by coordinates, and write
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∑
u,v Au,v||f(u)− f(v)||1∑

u,v ||f(u)− f(v)||1

=

∑
i

∑
u,v Au,v|fi(u)− fi(v)|∑

i

∑
u,v |fi(u)− fi(v)|

≥ min
i

∑
u,v Au,v|fi(u)− fi(v)|∑

u,v |fi(u)− fi(v)|

This already shows that, in the definition of φ′, we can map, with no loss of generality,
to 1-dimensional `1 spaces.

Let i∗ be the coordinate that achieves the minimum above. Because the cost function
is invariant under the shifts and scalings (that is, the cost of a function x → f(x) is
the same as the cost of x → af(x) + b for every two constants a 6= 0 and b) there
is a function g : V → R such that g has the same cost function as fi∗ and it has a
unit-length range maxv g(v)−minv g(v) = 1.

Let us now pick a threshold t uniformly at random from the interval [minv g(v),maxv g(v)],
and define the random variables

St := {v : g(v) ≤ t

We observe that for every pairs of vertices u, v we have

E |1St(u)− 1St(v)| = |g(u)− g(v)|

and so we get ∑
u,v Au,v||f(u)− f(v)||1∑

u,v ||f(u)− f(v)||1

≥
∑

u,v Au,v|g(u)− g(v)|∑
u,v |g(u)− g(v)|

=
E
∑

u,v Au,v|1St(u)− 1St(v)|
E
∑

u,v |1St(u)− 1St(v)|

Finally, by an application of (5), we see that there must be a set S among the possible
values of St such that (4) holds.

Notice that the proof was completely constructive: we simply took the coordinate fi∗
of f with the lowest cost function, and then the “threshold cut” given by fi∗ with the
smallest sparsity. �
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3 A Theorem of Bourgain

We will derive our main result (2) from the L1 “rounding” process of the previous
section, and from the following theorem of Bourgain (the efficiency considerations are
due to Linial, London and Rabinovich).

Theorem 2 (Bourgain) Let d : V × V → R be a semimetric defined over a finite
set V . Then there exists a mapping f : V → Rm such that, for every two elements
u, v ∈ R,

||f(u)− f(v)||1 ≤ d(u, v) ≤ ||f(u)− f(v)||1 · c · log |V |

where c is an absolute constant. Given d, the mapping f can be found with high
probability in randomized polynomial time in |V |.

To see that the above theorem of Bourgain implies (2), consider a graph G, and let
d be the optimal solution of the Leighton-Rao relaxation of the sparsest cut problem
on G, and let f : V → R be a mapping as in Bourgain’s theorem applied to d. Then

LR(G) =
|V |2

|E|
·
∑

u,v Au,vd(u, v)∑
u,v d(u, v)

≥ |V |
2

|E|
·

∑
u,v Au,v||f(u)− f(v)||1

c · log |V | ·
∑

u,v ||f(u)− f(v)||1

≥ 1

c · log |U |
· φ(G)
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