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Lecture 7

In which we analyze a nearly-linear time algorithm for finding an approximate eigen-
vector for the second eigenvalue of a graph adjacency matrix, to be used in the spectral
partitioning algorithm.

In past lectures, we showed that, if G = (V,E) is a d-regular graph, and M is
its normalized adjacency matrix with eigenvalues 1 = λ1 ≥ λ2 . . . ≥ λn, given an
eigenvector of λ2, the algorithm SpectralPartition finds, in nearly-linear time O(|E|+
|V | log |V |), a cut (S, V − S) such that h(S) ≤ 2

√
h(G).

More generally, if, instead of being given an eigenvector x such that Mx = λ2x, we
are given a vector x ⊥ 1 such that xTMx ≥ (λ2 − ε)xTx, then the algorithm finds
a cut such that h(S) ≤

√
4h(G) + 2ε. In this lecture we describe and analyze an

algorithm that computes such a vector using O((|V | + |E|) · 1
ε
· log |V |

ε
) arithmetic

operations.

A symmetric matrix is positive semi-definite (abbreviated PSD) if all its eigenvalues
are nonnegative. We begin by describing an algorithm that approximates the largest
eigenvalue of a given symmetric PSD matrix. This might not seem to help very
much because the adjacency matrix of a graph is not PSD, and because we want to
compute the second largest, not the largest, eigenvalue. We will see, however, that the
algorithm is easily modified to approximate the second eigenvalue of a PSD matrix
(if an eigenvector of the first eigenvalue is known), and that the adjacency matrix of
a graph can easily be modified to be PSD.

1 The Power Method to Approximate the Largest

Eigenvalue

The algorithm works as follows
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Algorithm Power

• Input: PSD symmetric matrix M ∈ Rn×n, positive integer t

• Pick uniformly at random x0 ∼ {−1, 1}n

• for i := 1 to t

– xi := Mxi−1

• return xt

That is, the algorithm simply picks uniformly at random a vector x with ±1 coordi-
nates, and outputs M tx.

Note that the algorithm performs O(t · (n + m)) arithmetic operations, where m is
the number of non-zero entries of the matrix M .

Theorem 1 For every PSD matrix M , positive integer t and parameter ε > 0, with
probability ≥ 3/16 over the choice of x0, the algorithm Power outputs a vector xt such
that

xTt Mxt
xTt xt

≥ λ1 · (1− ε) ·
1

1 + 4n(1− ε)2t

where λ1 is the largest eigenvalue of M .

Note that, in particular, we can have t = O(log n/ε) and
xT

t Mxt

xT
t xt
≥ (1−O(ε)) · λ1.

Let λ1 ≥ · · ·λn be the eigenvalues of M , with multiplicities, and v1, . . . ,vn be a
system of orthonormal eigenvectors such that Mvi = λivi. Theorem 1 is implied by
the following two lemmas

Lemma 2 Let v ∈ Rn be a vector such that ||v|| = 1. Sample uniformly x ∼
{−1, 1}n. Then

P
[
|〈x,v〉| ≥ 1

2

]
≥ 3

16

Lemma 3 Let x ∈ Rn be a vector such that |〈x,v1〉| ≥ 1
2
. Then, for every positive

integer t and positive ε > 0, if we define y := M tx, we have

yTMy

yTy
≥ λ1 · (1− ε) ·

1

1 + 4||x||2(1− ε)2t
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It remains to prove the two lemmas.

Proof: [Of Lemma 2] Let v = (v1, . . . , vn). The inner product 〈x,v〉 is the random
variable

S :=
∑
i

xivi

Let us compute the first, second, and fourth moment of S.

ES = 0

ES2 =
∑
i

v2
i = 1

ES4 = 3

(∑
i

v2
i

)
− 2

∑
i

v4
i ≤ 3

Recall that the Paley-Zygmund inequality states that if Z is a non-negative random
variable with finite variance, then, for every 0 ≤ δ ≤ 1, we have

P[Z ≥ δ EZ] ≥ (1− δ)2 · (EZ)2

EZ2
(1)

which follows by noting that

EZ = E[Z · 1Z<δ EZ ] + E[Z · 1Z≥δ EZ ,

that

E[Z · 1Z<δ EZ ] ≤ δ EZ ,

and that

E[Z · 1Z≥δ EZ ] ≤
√

EZ2 ·
√

E 1Z≥δ EZ

=
√

EZ2
√

P[Z ≥ δ EZ]

We apply the Paley-Zygmund inequality to the case Z = S2 and δ = 1/4, and we
derive

P
[
S2 ≥ 1

4

]
≥
(

3

4

)2

· 1

3
=

3

16
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Remark 4 The proof of Lemma 2 works even if x ∼ {−1, 1}n is selected according to
a 4-wise independent distribution. This means that the algorithm can be derandomized
in polynomial time.

Proof:[Of Lemma 3] Let us write x as a linear combination of the eigenvectors

x = a1v1 + · · ·+ anvn

where the coefficients can be computed as ai = 〈x,vi〉. Note that, by assumption,
|a1| ≥ .5, and that, by orthonormality of the eigenvectors, ||x||2 =

∑
i a

2
i .

We have
y = a1λ

t
1v1 + · · ·+ anλ

t
nvn

and so

yTMy =
∑
i

a2
iλ

2t+1
i

and
yTy =

∑
i

a2
iλ

2t
i

We need to prove a lower bound to the ratio of the above two quantities. We will
compute a lower bound to the numerator and an upper bound to the denominator in
terms of the same parameter.

Let k be the number of eigenvalues larger than λ1 · (1− ε). Then, recalling that the
eigenvalues are sorted in non-increasing order, we have

yTMy ≥
k∑
i=1

a2
iλ

2t+1
i ≥ λ1(1− ε)

k∑
i=1

a2
iλ

2t
i

We also see that

n∑
i=k+1

a2
iλ

2t
i

≤ λ2t
1 · (1− ε)2t

n∑
i=k+1

a2
i

≤ λ2t
1 · (1− ε)2t · ||x||2
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≤ 4a2
1λ

2t
1 (1− ε)2t||x||2

≤ 4||x||2(1− ε)2t

k∑
i=1

a2
iλ

2t
i

So we have

yTy ≤ (1 + 4||x||2(1− ε)2t) ·
k∑
i=1

a2
i

giving

yTMy

yTy
≥ λ1 · (1− ε) ·

1

1 + 4||x||2(1− ε)2t

�

Remark 5 Where did we use the assumption that M is positive semidefinite? What
happens if we apply this algorithm to the adjacency matrix of a bipartite graph?

2 Approximating the Second Eigenvalue

If M is a PSD matrix, and if we know a unit-length eigenvector v1 of the largest
eigenvalue of M , we can approximately find the second eigenvalue with the following
adaption of the algorithm from the previous section.

Algorithm Power2

• Input: PSD symmetric matrix M ∈ Rn×n, positive integer t, vector v1

• Pick uniformly at random x ∼ {−1, 1}n

• x0 := x− 〈v1,x〉 · v1

• for i := 1 to t

– xi := Mxi−1

• return xt

If v1, . . . ,vn is an orthonormal basis of eigenvectors for the eigenvalues λ1 ≥ · · · ≥ λn
of M , then, at the beginning, we pick a random vector

x = a1v1 + a2v2 + · · · anvn
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that, with probability at least 3/16, satisfies |a2| ≥ 1/2. (Cf. Lemma 2.) Then we
compute x0, which is the projection of x on the subspace orthogonal to v1, that is

x0 = a2v2 + · · · anvn

Note that ||x||2 = n and that ||x0||2 ≤ n.

The output is the vector xt

xt = a2λ
t
2v

2 + · · · anλtnvn

If we apply Lemma 3 to subspace orthogonal to v1, we see that when |a2| ≥ 1/2 we
have that, for every 0 < ε < 1,

xTt Mxt
xTt xt

≥ λ2 · (1− ε) ·
1

4n(1− ε)2t

We have thus established the following analysis.

Theorem 6 For every PSD matrix M , positive integer t and parameter ε > 0, if v1

is a length-1 eigenvector of the largest eigenvalue of M , then with probability ≥ 3/16
over the choice of x0, the algorithm Power2 outputs a vector xt ⊥ v1 such that

xTt Mxt
xTt xt

≥ λ2 · (1− ε) ·
1

1 + 4n(1− ε)2t

where λ2 is the second largest eigenvalue of M , counting multiplicities.

Finally, we come to the case in which M is the normalized adjacency matrix of a
regular graph.

We know that M has eigenvalues 1 = λ1 ≥ · · ·λn ≥ −1 and that 1√
n
· 1 is an

eigenvector of λ1.

Consider now the matrix M + I. Every eigenvector of M with eigenvalue λ is clearly
also an eigenvector of M + I with eigenvalue 1 + λ, and vice versa, thus M + I has
eigenvalues 2 = 1 + λ1 ≥ 1 + λ2 ≥ · · · ≥ 1 + λn ≥ 0 and it is PSD.

This means that we can run algorithm Power2 on the matrix I +M using the vector
v1 = 1√

n
1 and a parameter t = O(ε−1 log n/ε)). The algorithm finds, with probability

≥ 3/16, a vector xt ⊥ 1 such that

xTt (M + I)xt
xTt xt

≥ (1 + λ2) · (1− 2ε)
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which is equivalent to

xTt Mxt
xTt xt

≥ λ2 − 2ε− 2ελ2 ≥ λ2 − 4ε
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