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Lecture 5

In which we introduce the theory of characters of finite abelian groups, which we
will use to compute eigenvalues and eigenvectors of graphs such as the cycle and the
hypercube

In the past lectures we have established the Cheeger inequalities

1− λ2

2
≤ h(G) ≤

√
2 · (1− λ2)

and the fact that the SpectralPartitioning algorithm, when given an eigenvector of
λ2, finds a cut (S, V −S) such that h(S) ≤ 2

√
h(G). In the next lecture we will show

that all such results are tight, up to constants, by proving that

• The dimension-d hypercube Hd has λ2 = 1 − 2
d

and h(Hd) = 1
d
, giving an

infinite family of graphs for which 1−λ2

2
= h(G), showing that the first Cheeger

inequality is exactly tight.

• The n-cycle Cn has λ2 = 1− O(n−2), and h(Cn) = 2
n
, giving an infinite family

of graphs for which h(G) = Ω(
√

1− λ2), showing that the second Cheeger
inequality is tight up to a constant.

• There is an eigenvector of the 2nd eigenvalue of the hypercube Hd, such that the
SpectralPartitioning algorithm, given such a vector, outputs a cut (S, V − S)
of expansion h(S) = Ω(1/

√
d), showing that the analysis of the SpectralParti-

tioning algorithm is tight up to a constant.

In this lecture we will develop some theoretical machinery to find the eigenvalues and
eigenvectors of Cayley graphs of finite Abelian groups, a class of graphs that includes
the cycle and the hypercube, among several other interesting examples. This theory
will also be useful later, as a starting point to talk about algebraic constructions of
expanders.

For readers familiar with the Fourier analysis of Boolean functions, or the discrete
Fourier analysis of functions f : Z/NZ → C, or the standard Fourier analysis of
periodic real functions, this theory will give a more general, and hopefully interesting,
way to look at what they already know.

1



1 Characters

We will use additive notation for groups, so, if Γ is a group, its unit will be denoted
by 0, its group operation by +, and the inverse of element a by −a. Unless, noted
otherwise, however, the definitions and results apply to non-abelian groups as well.

Definition 1 (Character) Let Γ be a group (we will also use Γ to refer to the set
of group elements). A function f : Γ→ C is a character of Γ if

• f is a group homomorphism of Γ into the multiplicative group C− {0}.

• for every x ∈ Γ, |f(x)| = 1

Though this definition might seem to not bear the slightest connection to our goals,
the reader should hang on because we will see next time that finding the eigenvectors
and eigenvalues of the cycle Cn is immediate once we know the characters of the group
Z/nZ, and finding the eigenvectors and eigenvalues of the hypercube Hd is immediate
once we know the characters of the group (Z/2Z)d.

Remark 2 (About the Boundedness Condition) If Γ is a finite group, and a is
any element, then

a+ · · ·+ a︸ ︷︷ ︸
|Γ| times

= 0

and so if f : Γ→ C is a group homomorphism then

1 = f(0) = f(a+ · · ·+ a︸ ︷︷ ︸
|Γ| times

) = f(a)|Γ|

and so f(a) is a root of unity and, in particular, |f(a)| = 1. This means that, for
finite groups, the second condition in the definition of character is redundant.

In certain infinite groups, however, the second condition does not follow from the first,
for example f : Z→ C defined as f(n) = en is a group homomorphism of (Z,+) into
(C− {0}, ·) but it is not a character.

Just by looking at the definition, it might look like a finite group might have an infinite
number of characters; the above remark, however, shows that a character of a finite
group Γ must map into |Γ|-th roots of unity, of which there are only |Γ|, showing a
finite |Γ||Γ| upper bound to the number of characters. Indeed, a much stronger upper
bound holds, as we will prove next, after some preliminaries.

Lemma 3 If Γ is finite and χ is a character that is not identically equal to 1, then∑
a∈Γ χ(a) = 0
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Proof: Let b be such that χ(b) 6= 1. Note that

χ(b) ·
∑
a∈Γ

χ(a) =
∑
a∈Γ

χ(b+ a) =
∑
a∈Γ

χ(a)

where we used the fact that the mapping a→ b+a is a permutation. (We emphasize
that even though we are using additive notation, the argument applies to non-abelian
groups.) So we have

(χ(b)− 1) ·
∑
a∈Γ

χ(a) = 0

and since we assumed χ(b) 6= 1, it must be
∑

a∈Γ χ(a) = 0. �

If Γ is finite, given two functions f, g : Γ→ C, define the inner product

〈f, g〉 :=
∑
a∈Γ

f(a)g∗(a)

Lemma 4 If χ1, χ2 : Γ→ C are two different characters of a finite group Γ, then

〈χ1, χ2〉 = 0

We will prove Lemma 4 shortly, but before doing so we note that, for a finite group Γ,
the set of functions f : Γ → C is a |Γ|-dimensional vector space, and that Lemma 4
implies that characters are orthogonal with respect to an inner product, and so they
are linearly independent. In particular, we have established the following fact:

Corollary 5 If Γ is a finite group, then it has at most |Γ| characters.

It remains to prove Lemma 4, which follows from the next two statements, whose
proof is immediate from the definitions.

Fact 6 If χ1, χ2 are characters of a group Γ, then the mapping x→ χ1(x) · χ2(x) is
also a character.

Fact 7 If χ is a character of a group Γ, then the mapping x → χ∗(x) is also a
character, and, for every x, we have χ(x) · χ∗(x) = 1.

To complete the proof of Lemma 4, observe that:

• the function χ(x) := χ1(x) · χ∗2(x) is a character;
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• the assumption of the lemma is that there is an a such that χ1(a) 6= χ2(a), and
so, for the same element a, χ(a) = χ1(a) · χ∗2(a) 6= χ2(a) · χ∗2(a) = 1

• thus χ is a character that is not identically equal to 1, and so

0 =
∑
a

χ(a) = 〈χ1, χ2〉

Notice that, along the way, we have also proved the following fact:

Fact 8 If Γ is a group, then the set of characters of Γ is also a group, with respect to
the group operation of pointwise multiplication. The unit of the group is the character
mapping every element to 1, and the inverse of a character is the pointwise conjugate
of the character.

The group of characters is called the Pontryagin dual of Γ, and it is denoted by Γ̂.

We now come to the punchline of this discussion.

Theorem 9 If Γ is a finite abelian group, then it has exactly |Γ| characters.

Proof: We give a constructive proof. We know that every finite abelian group is
isomorphic to a product of cyclic groups

(Z/n1Z)× (Z/n2Z)× · · · × (Z/nkZ)

so it will be enough to prove that

1. the cyclic group Z/nZ has n characters;

2. if Γ1 and Γ2 are finite abelian groups with |Γ1| and |Γ2| characters, respectively,
then their product has |Γ1| · |Γ2| characters.

For the first claim, consider, for every r ∈ {0, . . . , n− 1}, the function

χr(x) := e2πirx/n

Each such function is clearly a character (0 maps to 1, χr(−x) is the multiplicative
inverse of χr(x), and, recalling that e2πik = 1 for every integer k, we also have χr(a+
b mod n) = e2πira/n · e2πirb/n), and the values of χr(1) are different for different values
of r, so we get n distinct characters. This shows that Z/nZ has at least n characters,
and we already established that it can have at most n characters.
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For the second claim, note that if χ1 is a character of Γ1 and χ2 is a character of
Γ2, then it is easy to verify that the mapping (x, y) → χ1(x) · χ2(y) is a character
of Γ1 × Γ2. Furthermore, if (χ1, χ2) and (χ′1, χ

′
2) are two distinct pairs of characters,

then the mappings χ(x, y) := χ1(x) · χ2(y) and χ′(x, y) := χ′1(x) · χ′2(y) are two
distinct characters of Γ1 × Γ2, because we either have an a such that χ1(a) 6= χ′1(a),
in which case χ(a, 0) 6= χ′(a, 0), or we have a b such that χ2(b) 6= χ′2(b), in which case
χ(0, b) 6= χ′(0, b). This shows that Γ1 × Γ2 has at least |Γ1| · |Γ2| characters, and we
have already established that it can have at most that many �

This means that the characters of a finite abelian group Γ form an orthogonal basis
for the set of all functions f : Γ → C, so that any such function can be written as a
linear combination

f(x) =
∑
χ

f̂(χ) · χ(x)

For every character χ, 〈χ, χ〉 = |Γ|, and so the characters are actually a scaled-up
orthonormal basis, and the coefficients can be computed as

f̂(χ) =
1

|Γ|
∑
x

f(x)χ∗(x)

Example 10 (The Boolean Cube) Consider the case Γ = (Z/2Z)n, that is the
group elements are {0, 1}n, and the operation is bitwise xor. Then there is a character
for every bit-vector (r1, . . . , rn), which is the function

χr1,...,rn(x1, . . . , xn) := (−1)r1x1+···rnxn

Every boolean function f : {0, 1}n → C can thus be written as

f(x) =
∑

r∈{0,1}n
f̂(r) · (−1)

P
i rixi

where

f̂(r) =
1

2n

∑
x∈{0,1}n

f(x) · (−1)
P

i rixi

which is the boolean Fourier transform.

Example 11 (The Cyclic Group) To work out another example, consider the case
Γ = Z/NZ. Then every function f : {0, . . . , N − 1} → C can be written as
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f(x) =
∑

r∈{0,...,N−1}

f̂(r)e2πirx/n

where

f̂(x) =
1

N

∑
x

f(x)e−2πirx/n

which is the discrete Fourier transform.

2 A Look Beyond

Why is the term ”Fourier transform” used in this context? We will sketch an answer
to this question, although what we say from this point on is not needed for our goal
of finding the eigenvalues and eigenvectors of the cycle and the hypercube.

The point is that it is possible to set up a definitional framework that unifies both
what we did in the previous section with finite Abelian groups, and the Fourier series
and Fourier transforms of real and complex functions.

In the discussion of the previous section, we started to restrict ourselves to finite
groups Γ when we defined an inner product among functions f : Γ→ C.

If Γ is an infinite abelian group, we can still define an inner product among functions
f : Γ→ C, but we will need to define a measure over Γ and restrict ourselves in the
choice of functions. A measure µ over (a sigma-algebra of subsets of) Γ is a Haar
measure if, for every measurable subset A and element a we have µ(a + A) = µ(A),
where a + A = {a + b : b ∈ A}. For example, if Γ is finite, µ(A) = |A| is a Haar
measure. If Γ = (Z,+), then µ(A) = |A| is also a Haar measure (it is ok for a measure
to be infinite for some sets), and if Γ = (R,+) then the Lebesgue measure is a Haar
measure. When a Haar measure exists, it is more or less unique up to multiplicative
scaling. All locally compact topological abelian groups have a Haar measure, a very
large class of abelian groups, that include all finite ones, (Z,+), (R,+), and so on.

Once we have a Haar measure µ over Γ, and we have defined an integral for functions
f : Γ→ C, we say that a function is an element of L2(Γ) if∫

Γ

|f(x)|2dµ(x) <∞

For example, if Γ is finite, then all functions f : Γ→ C are in L2(Γ), and a function
f : Z→ C is in L2(Z) if the series

∑
n∈Z |f(n)|2 converges.

If f, g ∈ L2(Γ), we can define their inner product
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〈f, g〉 :=

∫
Γ

f(x)g∗(x)dµ(x)

and use Cauchy-Schwarz to see that |〈f, g〉| <∞.

Now we can repeat the proof of Lemma 4 that 〈χ1, χ2〉 = 0 for two different characters,
and the only step of the proof that we need to verify for infinite groups is an analog
of Lemma 3, that is we need to prove that if χ is a character that is not always equal
to 1, then ∫

Γ

χ(x)dµ(x) = 0

and the same proof as in Lemma 3 works, with the key step being that, for every
group element a, ∫

Γ

χ(x+ a)dµ(x) =

∫
Γ

χ(x)dµ(x)

because of the property of µ being a Haar measure.

We don’t have an analogous result to Theorem 9 showing that Γ and Γ̂ are isomorphic,
however it is possible to show that Γ̂ itself has a Haar measure µ̂, that the dual of Γ̂
is isomorphic to Γ, and that if f : Γ→ C is continuous, then it can be written as the
“linear combination”

f(x) =

∫
Γ̂

f̂(χ)χ(x)dµ̂(x)

where

f̂(χ) =

∫
Γ

f(x)χ∗(x)dµ(x)

In the finite case, the examples that we developed before correspond to setting µ(A) :=
|A|/|Γ| and µ̂(A) = |A|.

Example 12 (Fourier Series) The set of characters of the group [0, 1) with the
operation of addition modulo 1 is isomorphic to Z, because for every integer n we can
define the function χn : [0, 1)→ C

χn(x) := e2πixn

and it can be shown that there are no other characters. We thus have the Fourier
series for continuous functions f : [0, 1)→ C,
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f(x) =
∑
n∈Z

f̂(n)e2πixn

where

f̂(n) =

∫ 1

0

f(x)e−2πixndx
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