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Lecture 3

In which we prove the easy case of Cheeger’s inequality.

1 Expansion and The Second Eigenvalue

Let G = (V,E) be an undirected d-regular graph, A its adjacency matrix, M = 1
d
·A

its normalized adjacency matrix, and 1 = λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of
M .

Recall that we defined the edge expansion of a cut (S, V − S) of the vertices of G as

h(S) :=
E(S, V − S)

d ·min{|S|, |V − S|}

and that the edge expansion of G is h(G) := minS⊆V h(S).

We also defined the related notion of the sparsity of a cut (S, V − S) as

φ(S) :=
E(S, V − S)

d
n
· |S| · |V − S|

and φ(G) := minS φ(S); the sparsest cut problem is to find a cut of minimal sparsity.

Recall also that in the last lecture we proved that λ2 = 1 if and only if G is discon-
nected. This is equivalent to saying that 1− λ2 = 0 if and only if h(G) = 0. In this
lecture and the next we will see that this statement admits an approximate version
that, qualitatively, says that 1−λ2 is small if and only if h(G) is small. Quantitatively,
we have

Theorem 1 (Cheeger’s Inequalities)

1− λ2

2
≤ h(G) ≤

√
2 · (1− λ2) (1)
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2 The Easy Direction

In this section we prove

Lemma 2 1− λ2 ≤ φ(G)

From which we have one direction of Cheeger’s inequality, after recalling that φ(G) ≤
2h(G).

Let us find an equivalent restatement of the sparsest cut problem. If represent a set
S ⊆ V as a bit-vector x ∈ {0, 1}V , then

E(S, V − S) =
1

2
·
∑
ij

Aij · |xi − xj|

and

|S| · |V − S| = 1

2
·
∑
ij

|xi − xj|

so that, after some simplifications, we can write

φ(G) = min
x∈{0,1}V −{0,1}

∑
ij Mij|xi − xj|

1
n

∑
ij |xi − xj|

(2)

Note that, when xi, xj take boolean values, then so does |xi − xj|, so that we may
also equivalently write

φ(G) = min
x∈{0,1}V −{0,1}

∑
ij Mij|xi − xj|2

1
n

∑
ij |xi − xj|2

(3)

In the last lecture, we gave the following characterization of 1− λ2:

1− λ2 = min
x∈RV −{0},x⊥1

∑
ij Mij|xi − xj|2

2 ·
∑

i x
2
i

Now we claim that the following characterization is also true

1− λ2 = min
x∈RV −{0,1}

∑
ij Mij|xi − xj|2

1
n

∑
ij |xi − xj|2

(4)

This is because

∑
i,j

|xi − xj|2
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=
∑
ij

x2
i +

∑
ij

x2
j − 2

∑
ij

xixj

= 2n
∑

i

x2
i − 2

(∑
i

xi

)2

so for every x ∈ RV − {0} such that x ⊥ 1 we have that 2 ·
∑

i x
2
i = 1

n

∑
ij |xi − xj|2,

and so

min
x∈RV −{0},x⊥1

∑
ij Mij|xi − xj|2

2 ·
∑

i x
2
i

= min
x∈RV −{0},x⊥1

∑
ij Mij|xi − xj|2

1
n

∑
ij |xi − xj|2

To conclude the argument, take an x that maximized the right-hand side of (4),
and observe that if we shift every coordinate by the same constant then we obtain
another optimal solution, because the shift will cancel in all the expressions both
in the numerator and the denominator. In particular, we can define x′ such that
x′i = xi − 1

n

∑
j xj and note that the entries of x′ sum to zero, and so x′ ⊥ 1. This

proves that

min
x∈RV −{0},x⊥1

∑
ij Mij|xi − xj|2

1
n

∑
ij |xi − xj|2

= min
x∈RV −{0,1}

∑
ij Mij|xi − xj|2

1
n

∑
ij |xi − xj|2

and so we have established (4).

Comparing (4) and (3), it is clear that the quantity 1− λ2 is a continuous relaxation
of φ(G), and hence 1− λ2 ≤ φ(G).

3 Other Relaxations of φ(G)

Having established that we can view 1 − λ2 as a relaxation of φ(G), the proof that
h(G) ≤

√
2 · (1− λ2) can be seen as a rounding algorithm, that given a real-valued

solution to (4) finds a comparably good solution for (3).

Later in the course we will see two more approximation algorithms for sparsest cut
and edge expansion. Both are based on continuous relaxations of φ starting from (2).

The algorithm of Leighton and Rao is based on a relaxation that is defined by ob-
serving that every bit-vector x ∈ {0, 1}V defines the semi-metric d(i, j) := |xi − xj|
over the vertices; the Leighton-Rao relaxation is obtained by allowing arbitrary semi-
metrics:
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LR(G) := min
d : V × V → R
d semimetric

∑
ij Mijd(i, j)

1
n

∑
ij d(i, j)

It is not difficult to express LR(G) as a linear programming problem.

The algorithm of Arora-Rao-Vazirani is obtained by noting that, for a bit-vector
x ∈ {0, 1}V , the distances d(i, j) := |xi − xj| define a metric which can also be seen
as the Euclidean distance between the xi, because |xi − xj| =

√
(xi − xj)2, and such

that d2(i, j) is also a semi-metric, trivially so because d2(i, j) = d(i, j). If a distance
function d(·, ·) is a semi-metric such that

√
d(·, ·) is a Euclidean semi-metric, then

d(·, ·) is called a negative type semi-metric. The Arora-Rao-Vazirani relaxation is

ARV (G) := min
d : V × V → R
d negative type semimetric

∑
ij Mijd(i, j)

1
n

∑
ij d(i, j)

The Arora-Rao-Vazirani relaxation can be expressed as a semi-definite programming
problem.

From this discussion it is clear that the Arora-Rao-Vazirani relaxation is a tightening
of the Leigthon-Rao relaxation and that we have

φ(G) ≥ ARV (G) ≥ LR(G)

It is less obvious in this treatment, and we will see it later, that the Arora-Rao-
Vazirani is also a tightening of the relaxation of φ given by 1− λ2, that is

φ(G) ≥ ARV (G) ≥ 1− λ2

The relaxations 1− λ2 and LR(G) are incomparable.
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