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Notes for Lecture 16

Today we begin the proof of the PCP theorem.

Theorem 1 NP ⊆ PCPc=1,s= 1
2
(O(log(n)), O(1))

To do this we will construct instances of constraint satisfaction problems (CSPs) for
which it is hard to distinguish the case in which the CSP is satisfiable from the case in
which every assignment contradicts a constant fraction of constraints.

We will work with the type of CSPs where each constraint has two variables, but where
each variable can take on a non-boolean (but constant-size) range of values.

Definition 1 Max-2-CSP-Σ
Input: variables x1, . . . , xn that range over Σ, a collection of binary constraints.
Goal: find an assignment that maximizes that number of satisfied constaints.

Definition 2 If C is a CSP, we call opt(C) the fraction of constraints which are satisfied
by the optimal assignment.

The following is the version of the PCP Theorem that we will prove.

Theorem 2 There exists a Σ0, a polynomial time reduction R, and a δ0 > 0 such that

• R is a reduction from 3-coloring to Max-2-CSP-Σ0.

• If G is 3-colorable, then R(G) is satisfiable.

• If G is not 3-colorable, then opt(C) ≤ 1− δ0.

This theorem implies the PCP theorem because given a graph G, we can define a valid
proof to be a binary encoding of a solution to the constraint satisfaction problem R(G).
Given an alleged proof, the verifier randomly picks O( 1

δ0
) constraints to check, reads an

assignment for the variables in such constraints from the proof, and accepts if and only if
all constraints are satisfied.

The verifier uses O(log(n)) random bits and reads O( 1
δ0

log |Σ0|) bits of the proof. (We
assume that the assignment to the n variables is encoded as a string of n log |Σ0| bits.) If
R works as in the theorem statement, then if G is three colorable, the CSP is satisfiable
and there exists a valid proof that is accepted with probability 1. Furthermore, if G is not
three colorable, then, for every alleged proof, a δ0 fraction of the constraints in R(G) will
not be satisfied. Therefore, with probability at least 1

2 the verifier will choose a constraints
that is not satisfied, and thus reject.

Observe that 2-CSP-{a, b, c} is at least as hard is 3-coloring because 3-coloring can be
set up as a 2-CSP over a three-element range. We see from the theorem statement that
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• opt(G) = 1 ⇒ opt(R(G)) = 1.

• opt(G) ≤ 1− 1
|E| ⇒ opt(R(G)) ≤ 1− δ0.

The idea will be to create R by amplifying the fraction of unsatisfied constraints by a
constant factor while only increasing the number of constraints by a linear amount and
applying this amplification a logarithmic number of times. We can restate the theorem as
follows:

Theorem 3 (restated) There is δ0, Σ0, |Σ0| ≥ 3, and polynomial time R mapping inputs
of Max-2-CSP-Σ0 to Max-2-CSP-Σ0 such that

1. # of constraints of R(C) = O(#of constraints of R(C)).

2. opt(C) = 1 ⇒ opt(R(G)) = 1.

3. opt(C) ≤ 1− δ ⇒ opt(R(C)) ≤ 1− 2δ if δ < δ0.

We prove this theorem using two lemmas. The first lemma will amplify the number
of unsatisfiable constraints, but will also increase the range size. The second lemma will
reduce the range size, but will decrease the number of unsatisfiable constraints.

Lemma 4 (Amplification) ∀Σ0, ∀c, there exists Σ and a poly-time R1, mapping Max-2-
CSP-Σ0 to Max-2-CSP-Σ such that R satisfies 1) and 2) in Theorem 3 and opt(C) ≤ 1−δ ⇒
opt(R1(C)) ≤ 1− cδ provided that c ≤ δ0.

Lemma 5 (Range Reduction) ∃Σ0, ∃c0, such that for all Σ, there exists a poly-time R2,
mapping Max-2-CSP-Σ to Max-2-CSP-Σ0 such that R satisfies 1) and 2) in Theorem 3 and
opt(C) ≤ 1− δ ⇒ opt(R2(C)) ≤ 1− δ/c0.

To get the theorem from these two lemmas, let c = 2c0 in Lemma 4, then the composition
R2(R1(·)) solves the theorem because:

opt(C) ≤ 1− δ ⇒ opt(R1(C)) ≤ 1− cδ = 1− 2c0δ ⇒ opt(R2(R1(C))) ≤ 1− 2δ

We conclude today’s lecture with a preliminary result that will be helpful in the proof
of Lemma 4, by showing that without loss of generality we can work with instances of
Max-2-CSP-Σ whose constraint graph is a bounded-degree expander.

If C is an instance of Max-2-CSP-Σ, its constraint graph is a multi-graph GC = (V,E)
that has one vertex for every variable of C, and that has one edge for every constraint of
C, joining the vertices corresponding to the two variables that appear in the constraint.

First we convert the graph to a bounded degree graph. We do this in much the same
way as we reduced 3SAT to 3SAT where each variable occurs at most some constant number
of times.

Let C be a set of constraints for a Max-2-CSP-Σ over variables x1, . . . , xn where xi occurs
mi times. For every i introduce variables y1

i , . . . , y
mi
i and construct a k-regular graph Gi

with mi vertices of edge expansion at least 1 (note that k is a constant). Now construct a
new Max-2-CSP-Σ C′ over the yj

i variables as follows:
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• For each constraint f(xi, xj) in C where f is the ath occurrence of xi and the bth
occurrence of xj create a new constraint f(ya

i , yb
j).

• For every i, for every edge (a, b) ∈ Gi create a constraint ya
i = yb

i .

The # of constraints in C = 1
2

∑
i mi

The # of constraints in C′ = 1
2

∑
i mi +

∑
i

kmi
2 = k+1

2

∑
i mi = O(# of constraints in

C).
As we saw with the 3SAT reduction, the minimum number of constraints violated in C′

is the same as the minimum number of constraints violated in C.
Thus we obtain a regular degree-d graph (d = k + 1).
Now we would like to, by adding vacuous constraints, make this graph into an expander.

Claim 6 For i ∈ {1, 2}, let Gi = (V,Ei) be a degree d-regular graph with adjacency matrix
Mi. Let G be the 2d-regular graph obtained by taking the disjoint union of the edges of G1

and the edges of G2, so that the transition matrix M of G satisfies M = 1
2M1 + 1

2M2.
Then λ̄2(G) ≤ 1

2 + 1
2 λ̄2(G2).

Proof:

λ̄2(G) = max
x⊥(1,...,1)

|xMxT |
xxT

≤ max
x⊥(1,...,1)

1
2 |xM1x

T |+ 1
2 |xM2x

T |
xxT

≤ 1
2

+
1
2
λ̄2(G2) .

2

Let C be a CSP with a d-regular constraint graph. Let CEXP be a CSP with d-regular
λ-expanding constraint graph and constraints that are always trivially satisfied. Then
C + CEXP has a constraint graph which is 2d-regular and is

(
1
2 + 1

2λ
)
-expanding.

Furthermore, if C is satisfiable, then C + CEXP is also satisfiable. If opt(C) ≤ 1− δ then
opt(C + CEXP ) ≤ 1− δ/2.

3


