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Notes for Lecture 14

In the last lecture, we saw how a series of alternated squaring and zig-zag products can
turn any connected graph into a good expander and, in particular, into a graph of diameter
O(log n). Today we’ll see how that construction naturally leads to Reingold’s O(log n)-
space deterministic algorithm for ST-UCONN, the problem of connectivity in undirected
graphs. There is an easy reduction from ST-UCONN in general graphs to the special case
of 3-regular graphs, so we will only deal with the latter case.

We begin the lecture with the last missing piece from the expander constructions we
have seen so far: how to construct a d-regular graph H with d4 vertices and small λ̄2.

1 An Explicit Construction of Small Expanders

In this section we prove the following theorem, which was stated without proof in a past
lecture.

Theorem 1 For every prime p and integer t < p, there is a p2-regular graph H with pt+1

vertices and λ̄2(H) ≤ t
p .

We let the vertex set of H be V := Ft+1
p . For every α, β ∈ F, and every vertex v =

(v0, . . . , vt), we have an edge connective v to the vertex (v0 +β, v1 +βα, . . . , vt +βαt). Note
that the graph is p2-regular as promised.

In order to analyse the eingenvalues of (the transition matrix of) H, we will present
a set of |V | orthogonal eigenvectors, and we will be guaranteed that their corresponding
eigenvalues include all the eigenvalues of the graph. Although we know that there are real
eigenvectors, we will present a system of eigenvectors with complex-valued entries.

We start with a few preliminary observations. Let ω := e2πi/p be a primitive p-th root
of unity. Observe that ω has the property that ωp = 1, and that

ω0 + ω + ω2 + · · ·ωp−1 = 0

where the above equality follows from the fact that, if we define s :=
∑p−1

j=0 ωj , then we
have ω · s = s, and so s = 0.

More generally, for every 1 ≤ k ≤ p− 1, we have

p−1∑
j=0

ωkj = 0

because the mapping j → kj mod p is a bijection, and so the above summation is just
a reordering of the sum

∑p−1
j=0 ωj .

We now define our system of eigenvectors. For b ∈ Ft+1, we define the vector xb as

xb(a) := ω
P

j ajbj
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We will need the following two “linearity” properties

xb(u) · xb(v) = xb(u + v) (1)

and
xa(v) · xb(v) = xa+b(v) (2)

Note also that xa(u) = x−a(u).
We can now prove that the vectors xb are orthogonal. Take any two vectors xa, xb,

b 6= a, and consider their inner product

〈xa, xb〉 =
∑

v

xa(v)xb(v) =
∑

v

xa−b(v)

=
∑

v

ω
P

j(aj−bj)vj =
∏
j

∑
vj

ω(aj−bj)vj = 0

where the last equality follows from the fact that if a 6= b then there is an index j such that
aj − bj 6≡ 0 (mod p), and so, for that j,∑

vj

ω(aj−bj)vj = 0

Next, we prove that each of the vectors xa is an eigenvector. If M is the transition
matrix of H, then

(xaM)(v) =
1
p2

∑
α,β

xa(v − (β, βα, · · ·βαt))

and, using “linearity,”

=
1
p2

∑
α,β

xa(v)xa(−(β, βα, · · ·βαt))

= xa(v) · 1
p2

∑
α,β

xa(β, βα, · · ·βαt)

where we have eliminated the minus sign via the change of variable β → −β.
Thus we established that each vector xa is an eigenvector, with eigenvalue λa

λa :=
1
p2

∑
α,β

xa(β, βα, · · · , βαt)

When a = (0, . . . , 0), then λ0,...,0 = 1, and the corresponding eigenvector is (1, . . . , 1),
as usual in an undirected graph. We now bound all other eigenvalues in absolute value.

Let a 6= (0, . . . , 0), and define the polynomial Pa(z) := a0 + a1z + · · · + atz
t. This is a

non-zero polynomial of degree t, and hence it has at most t roots.
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|λa| =

∣∣∣∣∣∣ 1
p2

∑
α,β

xa(β, βα, · · · , βαt)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
p2

∑
α,β

ωa0β+a1βα+···+atβαt

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
p2

∑
α,β

ωβ·Pa(α)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
p2

∑
α:Pa(α)=0

∑
β

ωβ·0

∣∣∣∣∣∣ +

∣∣∣∣∣∣ 1
p2

∑
α:Pa(α) 6=0

∑
β

ωβ·Pa(α)

∣∣∣∣∣∣
≤ t

p

With the last inequality following from the fact that there are at most t values of α such
that Pa(α) = 0, and from the fact that for each α such that Pa(α) 6= 0 we have, by previous
calculations ∑

β

ωβ·Pa(α) = 0

2 Reingold’s Connectivity Algorithm

Let H be a d-regular graph on d4 vertices such that λ̄2(H) ≤ 1
10 . From the construction of

the previous section, we can take p = 71 and t = 7, so that the graph is d = (71)2-regular
and has (71)8 = d4 vertices, while its λ̄2 parameter is at most 7

71 .
If G0 is a d2-regular graph on n vertices, and we define, for k ≥ 1,

Gk := G2
k−1

Z©H

Then we proved in the previous lecture that each Gk is d2-regular, it has n ·d4k vertices,
and

λ̄2(Gk) ≤ max
{

1
2
, 1− (1.2)k(1− λ̄2(G))

}
In particular, if G is a connected 3-regular graph, and G0 is defined as G plus d2 − 3

self-loops on each vertex, then

λ̄2(Gk) ≤ max
{

1
2
, 1− (1.2)k ·O

(
1
n2

)}
and, for k = O(log n), Gk has a λ̄2 parameter that is at most 1/2. This also implies, by

earlier calculations, that the diameter of Gk is at most O(log nd4k) = O(log n).
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Let us give names to the vertices and edges of Gk.
Let us start from G1 := G2

0
Z©H. G2

0 has the same vertex set as G0, but the (a, b)-th
edge out of u in G2

0 is the edge that connects u with v, provided that there is a vertex w
in G0 such that w is the a-th neighbor of v and u is the b-th neighbor of w. (In the above
a, b ∈ [d2].)

In G2
0
Z©H, we have vertices of the type (u, (a, b)), and we have that the c-th neighbor of

(u, (a, b)) is defined in the following way. Write c = (c1, c2), so that c1 and c2 index edges
in H. Let (f, g) be the c1-th neihgbor of (a, b) in H. Let (v, (h, m)) be the unique neighbor
of (u, (f, g)) outside the block of u in the replacement product. (That is, v is the (f, g)-th
neighbor of u in G2

0 and u is the (h, m)-th neighbor of v in G2
0.) Finally, let (p, q) be the

c2-th neighbor of (f, g) in H.
Then (v, (p, q)) is the (c1, c2)-th neighbor of (u, (a, b)) in G1.
In general, a vertex of Gk is of the form (u, a1, . . . , ak) where each ai is an element of

[d4].
Suppose now that G is not connected, but that a set of vertices S in G induces a

connected component. As before, define G0 to be G plus d2 − 3 self-loops on each vertex,
and define Gk := G2

k−1
Z©H. If we focus, at each step k, on the set of vertices of the form

(u, a1, . . . , ak) with u ∈ S, then the graph they induce is the same we would have obtained as
if we had started with G restricted to S and carried out the above procedure. In particular,
when k = O(log n), this subgraph of Gk has logarithmic diameter. Note also that if S and
T induce two distinct connected components in G, then vertices of the form (u, a1, . . . , ak)
with u ∈ S and (v, b1, . . . , bk) with v ∈ T will form two distinct connected component in
Gk.

These observations give the outline of Reingold’s algorithm. Given a 3-regular graph
G on n vertices and two vertices s, t, construct the graph Gk as above, with k = O(log n)
chosen so that each connected component of G becomes a connected component of Gk having
λ̄2 parameter at most 1

2 , and so diameter O(log n). Then, check whether (s, a1, . . . , ak) and
(t, a1 . . . , ak) are connected, where the ai can be chosen arbitrarily.

The second step can be implemented using O(log n) memory, because Gk has nO(1)

vertices, O(1) degree and O(log n) diameter. If the construction of Gk with k = O(log n)
can be carried out by a O(log n) memory transducer, then the whole computation can be
carried out using O(log n) space. (Recall that a log-space computation performed on the
output of a log-space transducer can be performed in log-space.)

It remains to organize the recursive computation of the adjacency matrix of Gk in terms
of Gk−1 so that each step of the recursion can be implemented using only O(log n) global
memory, shared between the various levels of recursion, and a constant number of extra
bits of memory per level. We shall refer to Reingold’s paper for the details.

3 References

Reingold’s algorithm appeared in [Rei05].
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