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Notes for Lecture 14

In the last lecture, we saw how a series of alternated squaring and zig-zag products can
turn any connected graph into a good expander and, in particular, into a graph of diameter
O(logn). Today we’ll see how that construction naturally leads to Reingold’s O(logn)-
space deterministic algorithm for ST-UCONN, the problem of connectivity in undirected
graphs. There is an easy reduction from ST-UCONN in general graphs to the special case
of 3-regular graphs, so we will only deal with the latter case.

We begin the lecture with the last missing piece from the expander constructions we
have seen so far: how to construct a d-regular graph H with d* vertices and small \o.

1 An Explicit Construction of Small Expanders

In this section we prove the following theorem, which was stated without proof in a past
lecture.

Theorem 1 For every prime p and integer t < p, there is a p?-reqular graph H with ptt!
vertices and \o(H) < ]%.

We let the vertex set of H be V := IE‘;H. For every «, 8 € [F, and every vertex v =
(vo, . ..,v;), we have an edge connective v to the vertex (vg+ 3, v1 + Bq, ..., v+ Bat). Note
that the graph is p?-regular as promised.

In order to analyse the eingenvalues of (the transition matrix of) H, we will present
a set of |V| orthogonal eigenvectors, and we will be guaranteed that their corresponding
eigenvalues include all the eigenvalues of the graph. Although we know that there are real
eigenvectors, we will present a system of eigenvectors with complex-valued entries.

We start with a few preliminary observations. Let w := ¢>™/P be a primitive p-th root
of unity. Observe that w has the property that wP = 1, and that

Wtwtw+ow =0

where the above equality follows from the fact that, if we define s := Z?;é w’, then we
have w-s=s, and so s = 0.
More generally, for every 1 < k < p — 1, we have

p—1
St =0
=0

because the mapping j — kj mod p is a bijection, and so the above summation is just
a reordering of the sum 3 7) w’.
We now define our system of eigenvectors. For b € F*!, we define the vector z; as

xp(a) := w23 @il



We will need the following two “linearity” properties

zp(u) - 2p(v) = 2p(u +v) (1)

and
2q(v) - (V) = Tas(v) (2)

Note also that z,(u) = x_q(u).
We can now prove that the vectors z; are orthogonal. Take any two vectors x,, xp,
b # a, and consider their inner product

(Ta, xp) Zxa = Zxa,b(v)
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where the last equality follows from the fact that if @ # b then there is an index j such that
a; —bj #0 (mod p), and so, for that j,

3wl
Uj

Next, we prove that each of the vectors z, is an eigenvector. If M is the transition
matrix of H, then

(l'a 2 Zxa 5 ﬁa /Bat»
and, using “linearity,”

Zxa xa B ﬂa ﬁat))

EZxaw, Ba, - fa’)
a,B

where we have eliminated the minus sign via the change of variable § — —/.
Thus we established that each vector z, is an eigenvector, with eigenvalue A,

= ptzxa(ﬂaﬁav'” aﬁat)
a,B

When a = (0,...,0), then \g__ o = 1, and the corresponding eigenvector is (1,...,1),
as usual in an undirected graph. We now bound all other eigenvalues in absolute value.

Let a # (0,...,0), and define the polynomial P,(2) := ag + a1z + - -+ + a;2". This is a
non-zero polynomial of degree ¢, and hence it has at most ¢ roots.
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With the last inequality following from the fact that there are at most ¢ values of « such
that P,(a) = 0, and from the fact that for each o such that P,(«) # 0 we have, by previous
calculations

Zwﬂpa(a) —0
B

2 Reingold’s Connectivity Algorithm

Let H be a d-regular graph on d* vertices such that \o(H) < 1—10. From the construction of
the previous section, we can take p = 71 and t = 7, so that the graph is d = (71)2-regular
and has (71)% = d* vertices, while its Ay parameter is at most 7—71

If Gy is a d?-regular graph on n vertices, and we define, for k > 1,

Gk = Gz_l@H
Then we proved in the previous lecture that each Gy, is d?-regular, it has n - d**

and

vertices,

3o (Gy) < max {; 1 - (L2)F(1 — XQ(G))}

In particular, if G is a connected 3-regular graph, and Gy is defined as G plus d*> — 3
self-loops on each vertex, then

Mo(G,) < max {; 1-(1.2)%.0 (;) }

and, for k = O(logn), G has a Ao parameter that is at most 1/2. This also implies, by
earlier calculations, that the diameter of Gy, is at most O(log nd**) = O(logn).



Let us give names to the vertices and edges of Gy.

Let us start from G; := G2@H. G2 has the same vertex set as Gp, but the (a,b)-th
edge out of u in G3 is the edge that connects u with v, provided that there is a vertex w
in G such that w is the a-th neighbor of v and u is the b-th neighbor of w. (In the above
a,b € [d?].)

In GZ®H, we have vertices of the type (u, (a,b)), and we have that the c-th neighbor of
(u, (a,b)) is defined in the following way. Write ¢ = (¢1, ¢2), so that ¢; and c2 index edges
in H. Let (f,g) be the ¢;-th neihgbor of (a,b) in H. Let (v, (h,m)) be the unique neighbor
of (u, (f,g)) outside the block of u in the replacement product. (That is, v is the (f, g)-th
neighbor of u in G and u is the (h, m)-th neighbor of v in G3.) Finally, let (p,q) be the
co-th neighbor of (f,g) in H.

Then (v, (p,q)) is the (c1, c2)-th neighbor of (u, (a,b)) in G;.

In general, a vertex of Gy, is of the form (u,ay,...,ar) where each a; is an element of
[d4].

Suppose now that G is not connected, but that a set of vertices S in G induces a
connected component. As before, define Gy to be G plus d? — 3 self-loops on each vertex,
and define G := Gi_1®H . If we focus, at each step k, on the set of vertices of the form
(u,aq,...,ar) with u € S, then the graph they induce is the same we would have obtained as
if we had started with G restricted to S and carried out the above procedure. In particular,
when k = O(logn), this subgraph of Gy has logarithmic diameter. Note also that if S and

T induce two distinct connected components in G, then vertices of the form (u, a1, ..., ax)
with v € S and (v,b1,...,b;) with v € T will form two distinct connected component in
Gp.

These observations give the outline of Reingold’s algorithm. Given a 3-regular graph
G on n vertices and two vertices s, t, construct the graph Gy as above, with k = O(logn)
chosen so that each connected component of G becomes a connected component of G having
o parameter at most %, and so diameter O(logn). Then, check whether (s,aq,...,a;) and
(t,ay...,ax) are connected, where the a; can be chosen arbitrarily.

The second step can be implemented using O(logn) memory, because Gy has n
vertices, O(1) degree and O(logn) diameter. If the construction of Gy with k = O(logn)
can be carried out by a O(logn) memory transducer, then the whole computation can be
carried out using O(logn) space. (Recall that a log-space computation performed on the
output of a log-space transducer can be performed in log-space.)

It remains to organize the recursive computation of the adjacency matrix of Gy, in terms
of Gi_1 so that each step of the recursion can be implemented using only O(logn) global
memory, shared between the various levels of recursion, and a constant number of extra
bits of memory per level. We shall refer to Reingold’s paper for the details.

o(1)

3 References

Reingold’s algorithm appeared in [Rei05].
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