
U.C. Berkeley — CS278: Computational Complexity Handout N4
Professor Luca Trevisan 1/31/2008

Notes for Lecture 4

In this lecture we introduce the polynomial hierarchy and prove the Gacs-Sipser-Lautemann
theorem that BPP is contained in the second level of the hierarchy.

1 Alternating Quantifiers

One way to look at the difference between NP and coNP is that a decision problem in NP
is asking a “does there exist” question, where the existence of the answer can by definition
be efficiently proved. On the other hand, coNP asks “is it true for all” questions, which
do not seem to have simple, efficient proofs.

Formally, a decision problem A is in NP if and only if there is a polynomial time
procedure V (·, ·) and a polynomial time bound p() such that

x ∈ A if and only if ∃y.|y| ≤ p(|x|) ∧ V (x, y) = 1

and a problem A is in coNP if and only if there is a polynomial time procedure V (·, ·)
and a polynomial bound p() such that

x ∈ A if and only if ∀y : |y| ≤ p(|x|), V (x, y) = 1

Now suppose you had a decision problem A defined in the following form:

x ∈ A⇔ ∃ y1 s.t. |y1| ≤ p(|x|) ∀ y2 s.t. |y2| ≤ p(|x|) V (x, y1, y2)

(where p() is a polynomial time bound and V (·, ·, ·) is a polynomial time procedure.)
In other words, an algorithm solving problem A should return yes on an input x if an

only if there exists some string y1 such that for all strings y2 (both of polynomial length),
the predicate V (x, y1, y2) holds. An example of such a problem is this: given a Boolean
formula ϕ over variables x1, . . . , xn, is there a formula ϕ′ which is equivalent to ϕ and is
of size at most k? In this case, y1 is the formula ϕ′, y2 is an arbitrary assignment to the
variables x1, . . . , xn, and V (x, y1, y2) is the predicate which is true if and only if x[y2] and
y1[y2] are both true or both false, meaning that under the variable assignment y2, ϕ and ϕ′

agree. Notice that ϕ′ is equivalent to ϕ if and only if it agrees with ϕ under all assignments
of Boolean values to the variables.

As we will see, the problem A is a member of the class Σ2 in the second level of the
polynomial hierarchy.

2 The hierarchy

The polynomial hierarchy starts with familiar classes on level one: Σ1 = NP and Π1 =
coNP. For all i ≥ 1, it includes two classes, Σi and Πi, which are defined as follows:

A ∈ Σi ⇔ ∃y1. ∀y2.Qyi. VA(x, y1, . . . , yi)

1

and
B ∈ Πi ⇔ ∀y1. ∃y2.Q

′yi. VB(x, y1, . . . , yi)

where the predicates VA and VB depend on the problems A and B, and Q and Q′ represent
the appropriate quantifiers, which depend on whether i is even or odd (for example, if
i = 10 then the quantifier Q for Σ10 is ∀, and the quantifier Q′ for Π10 is ∃). For clarity,
we have also omitted the conditions that each string yi must be of polynomial length, but
such conditions must be added for a completely formal definition of Σi and Πi.

One thing that is easy to see is that Πk = coΣk. Also, note that, for all i ≤ k − 1,
Πi ⊆ Σk and Σi ⊆ Σk. These subset relations hold for Πk as well. This can be seen by
noticing that the predicates V do not need to “pay attention to” all of their arguments,
and so can represent classes lower on the hierarchy which have a smaller number of them.

3 An Alternate Characterization

The polynomial hierarchy can also be characterized in terms of “oracle machines.” The idea
here is that, instead of a standard Turing machine, we consider one which is augmented
with an oracle of a certain power which can be consulted as many times as desired, and
using only one computational step each time. Syntactically, this can be written as follows.

Let A be some decision problem and M be a class of Turing machines. Then MA is
defined to be the class of machines obtained from M by allowing instances of A to be solved
in one step. Similarly, if M is a class of Turing machines and C is a complexity class, then
MC =

⋃
A∈CMA. If L is a complete problem for C, and the machines in M are powerful

enough to compute polynomial-time computations, then MC = ML.

Theorem 1 Σ2 = NP3SAT .

Proof: Let A ∈ Σ2, then for some polynomial p() and polynomial-time computable V ()
we have

x ∈ A if and only if ∃y1 s.t. |y1| ≤ p(|x|).∀y2 s.t. |y2| ≤ p(|x|).V (x, y1, y2) = 1

Then we define a non-deterministic machine with an NP-oracle as follows: on input x,
the machine guesses a string y1 of length at most p(|x|), and then asks the oracle whether
∃y2.|y2| ≤ p(|x|) ∧ V (x, y1, y2) = 0. The above question is an existential question about a
polynomial-time computation, so, by Cook’s theorem, it is possible to construct in polyno-
mial time a 3SAT instance that is satisfiable if and only if the answer to the above question
is YES. The machine accepts if and only if the answer from the oracle is NO. It is immediate
that the machine has an accepting computation if and only if

∃y1.|y1| ≤ p(|x|).(¬∃y2.|y2| ≤ p(|x|) ∧ V (x, y1, y2) = 0)

that is, the machine accepts if and only if x ∈ A.
Notice that, in the above computation, only one oracle query is made, even though the

definition of NP3SAT allows us to make an arbitrary number of oracle queries.
Let now A ∈ NP3SAT , and let M be the oracle machine that solves A. We first show

that there is a machine M ′ that also solves A, only makes one oracle query, and accepts

2

if and only if the answer to the oracle query is NO. On input x, M ′ guesses an accepting
computation of M(x), that is, M ′ guesses all the non-deterministic choices of M(x), all the
oracle questions, and all the answers. Then, for each question that was answered with a
YES, M ′ guesses a satisfying assignment to verify that the guess was correct. Finally, M ′

is left with a certain set of oracle questions, say, the formulae ϕ1, . . . , ϕk, for which it has
guessed that the correct oracle answer is NO. Then M ′ asks its oracle whether (a formula
equivalent to) ϕ1 ∨ · · · ∨ ϕk is satisfiable, and it accepts if and only if the answer is NO.

Consider the computation of M ′(x) when x ∈ A: there is a valid accepting computation
of M(x), and M ′(x) can guess that computation along with the valid oracle answers; it can
also guess valid assignments for all the queries for which the answer is YES; finally, it is left
with unsatisfiable formulae ϕ1, . . . , ϕk, the answer to the single oracle query of M ′ is NO,
and M ′ accepts.

Conversely, if M ′(x) has an accepting computation, then there must be a valid accepting
computation of M(x), and so x ∈ A. 2

In fact, a more general result is known, whose proof works along similar lines.

Theorem 2 For every i ≥ 2, Σi = NPΣi−1.

4 Additional Properties

Here are some more facts about the polynomial hierarchy, which we will not prove:

1. Πi and Σi have complete problems for all i.

2. A Σi-complete problem is not in Πj , j ≤ i − 1, unless Πj = Σi, and it is not in Σj

unless Σj = Σi.

3. Suppose that Σi = Πi for some i. Then Σj = Πj = Σi = Πi for all j ≥ i.

4. Suppose that Σi = Σi+1 for some i. Then Σj = Πj = Σi for all j ≥ i.

5. Suppose that Πi = Πi+1 for some i. then Σj = Πj = Πi for all j ≥ i.

We will just prove the following special case of part (3).

Theorem 3 Suppose NP = coNP. Then, for every i ≥ 2, Σi = NP.

Proof: Let us first prove that, under the assumption of the theorem, Σ2 = NP. Let A ∈ Σ2

and let M be the non-deterministic oracle machine that decides A using oracle access to
3SAT. Let also M ′ be the non-deterministic polynomial time Turing machine that decides
the complement of the 3SAT problem. We now describe a non-deterministic polynomial
time Turing machine M ′′ to decide A: on input x, M ′′ guesses an accepting computation
of M(x), along with oracle queries and answers; for each oracle question ϕ for which a YES
answer has been guessed, M ′′ guesses a satisfying assignment; for each oracle question ψ
for which a NO answer has been guessed, M ′′ guesses an accepting computation of M ′(ψ).
It is easy to verify that M ′′(x) has an accepting computation if and only if M3SAT (x) has
an accepting computation.

3

We can prove by induction on i that Σi = NP. We have covered the base case. Let us
now suppose that Σi−1 = NP; then Σi = NPΣi−1 = NPNP = Σ2 = NP. 2

While it seems like an artificial construction right now, in this lecture and in the next
one we shall see that the polynomial hierarchy helps us to understand other complexity
classes.

5 BPP⊆ Σ2

This result was first shown by Sipser and Gacs. Lautemann gave a much simpler proof
which we give below.

Lemma 4 If L is in BPP then there is an algorithm A such that for every x,

Prr(A(x, r) = right answer) ≥ 1− 1
3m ,

where the number of random bits |r| = m = |x|O(1) and A runs in time |x|O(1).

Proof: Let Â be a BPP algorithm for L. Then for every x, Prr(Â(x, r) = wrong answer) ≤
1
3 , and Â uses m̂(n) random bits where n = |x|.

Do k(n) repetitions of Â and accept if and only if at least
k(n)

2
executions of Â ac-

cept. Call the new algorithm A. Then A uses k(n)m̂(n) random bits and Prr(A(x, r) =
wrong answer) ≤ 2−ck(n). We can then find k(n) with k(n) = Θ(log m̂(n)) such that

1
2ck(n) ≤ 1

3k(n) ˆm(n)
. 2

Theorem 5 BPP⊆ Σ2.

Proof: Let L be in BPP and A as in the claim. Then we want to show that

x ∈ L⇔ ∃y1, . . . , ym ∈ {0, 1}m∀z ∈ {0, 1}m
m∨

i=1

A(x, yi ⊕ z) = 1

where m is the number of random bits used by A on input x.
Suppose x ∈ L. Then

Pry1,...,ym(∃zA(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0)

≤
∑

z∈{0,1}m

Pry1,...,ym(A(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0)

≤ 2m 1
(3m)m

< 1.

So

Pry1,...,ym(∀z
∨
i

A(x, yi ⊕ z)) = 1−Pry1,...,ym(∃zA(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0)

> 0.

4

So (y1, . . . , ym) exists.
Conversely suppose x /∈ L. Then

Prz

(∨
i

A(x, yi ⊕ z)

)
≤
∑

i

Prz (A(x, yi ⊕ z) = 1)

≤ m · 1
3m

=
1
3
.

So

Prz(A(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0) = Prz

(∨
i

A(x, yi ⊕ z)

)

≥ 2
3

> 0.

So there is a z such that
∨

iA(x, yi ⊕ z) = 0 for all y1, . . . , ym ∈ {0, 1}m. 2

6 References

The polynomial time hierarchy was defined by Stockmeyer [Sto76]. Wrathall [Wra76] shows
that every class in the polynomial hierarchy has complete problems. Sipser’s proof that
BPP ⊆ Σ2 appears in [Sip83], and Lautemann’s proof is in [Lau83].

References

[Lau83] C. Lautemann. BPP and the Polynomial Hierarchy. Information Processing Let-
ters, 17:215–217, 1983. 5

[Sip83] Michael Sipser. A complexity theoretic apprach to randomness. In Proceedings of
the 15th ACM Symposium on Theory of Computing, pages 330–335, 1983. 5

[Sto76] L.J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3:1–22, 1976. 5

[Wra76] C. Wrathall. Complete sets for the polynomial hierarchy. Theoretical Computer
Science, 3:23–34, 1976. 5

5

Exercises

1. In the MAX SAT problem we are given a formula ϕ in conjunctive normal form and
we want to find the assignment of values to the variables that maximizes the number
of satisfied clauses. (For example, if ϕ is satisfiable, the optimal solution satisfies all
the clauses and the MAX SAT problem reduces to finding a satisfying assignment.)
Consider the following decision problem: given a formula ϕ in conjunctive normal
form and an integer k, determine if k is the number of clauses of ϕ satisfied by an
optimal assignment.

• Prove that this problem is in NP if and only if NP = coNP.
[Hint: prove that it is both NP-hard and coNP-hard.]

• Prove that this problem is in Σ2.

6

	Alternating Quantifiers
	The hierarchy
	An Alternate Characterization
	Additional Properties
	BPP 2
	References

