
Solutions to Exercises

1. Show that if P = NP for decision problems, then every NP search problem can be
solved in polynomial time.

Solution Sketch. This is similar to something done in Lecture 7. Let R be the
relation that defines an NP search problem. Define the language L that contains all
the pairs (x, z) such that z is the prefix of a solution zz′ such that (x, zz′) ∈ R. Under
the assumption that P = NP, there is a polynomial time algorithm A that decides L.
Now, given x, we can construct a solution y such that (x, y) ∈ R, if such a solution
exists, one bit a time using A. (See notes of lecture 7 for more details.)

2. Generalize Theorem 3 in the Notes for Lecture 1. Say that a monotone non-decreasing
function t : N → N is time-constructible if, given n, we can compute t(n) in O(t(n))
time. Show that if t(n) is a time-constructible functions then DTIME(o(t(n))) 6⊆
DTIME(O(t(n) log t(n))).

Solution Sketch. Let U be the efficient universal Turing machine of Lecture 1. De-
fine the language L that contains all pairs (〈M〉, x) such that U rejects (〈M〉, (〈M〉, x))
within t(n) steps, where n is the length of (〈M〉, x). Then L is solvable in time
O(t(n) log t(n)). Suppose towards a contradiction that L were solvable in time o(t(n))
by a machine T . Then, U(〈T 〉, (〈T 〉, x)) also runs in time o(t(n)), where n is the length
of (〈M〉, x). For every sufficiently long x, the running time of U(〈T 〉, (〈T 〉, x)) is less
than t(n), and so (〈T 〉, x) ∈ L if and only if U(〈T 〉, (〈T 〉, x)) rejects, which happens if
and only if T (〈T 〉, x) rejects, which is supposed to happen if and only if (〈T 〉, x) 6∈ L

3. Define the class BPL (for bounded-error probabilistic log-space) as follows. A decision
problem L is in BPL if there is a log-space probabilistic Turing machine M such that

• For every r and every x, M(r, x) halts;

• If x ∈ L then Prr[M(r, x) accepts] ≥ 2/3;

• If x 6∈ L then Prr[M(r, x) accepts] ≤ 1/3.

Then

(a) Prove that RL ⊆ BPL.

Solution Sketch. We only need to reduce the error probability from 1/2 to
below 1/3, for example by doing two independent repetitions of the algorithm
and accepting if and only if both repetitions accept.

(b) Prove that BPL ⊆ SPACE(O((log n)2).

1

Solution Sketch. This is similar to Savitch’s algorithm. Let L be a BPL
language and M the machine required by the definition of BPL. Let p(n) be a
polynomial upper bound on the running time of M on inputs of length n. We
now describe a deterministic O(log2 n)-space algorithm for L. On input x of
length n, we consider the configuration graph of M(·, x). A vertex in the graph
is a description of a configuration of M on input x: state of the machine, content
of the work tape, position of the head on the input tape, position of the head
on the work tape. Each vertex has two outgoing edges, corresponding to the
two possible next configurations of the machine depending on the bit read from
the random tape. The accepting and rejecting configurations have no outgoing
edges.
We define a recursive procedure prob(c1, c2, k) that given two configurations c1

and c2 computes the probability that the machine reaches configuration c2 start-
ing from configuration c1 in exactly k steps. The base case when k = 1 are
treated separately. When k ≥ 2, then we compute∑

c

prob(c1, c, dk/2e) · prob(c, c2, bk/2c)

where the summation is taken over all configurations c. It is enough to represent
the probabilities as truncated decimals using O(log p(n)) digits. The truncation
introduces errors, but the error in proc(·, ·, p(n)) is small provided that we use
O(log p(n)) digits. The analysis of the recursion is as in Savitch’s algorithm.

(c) This last question requires a somewhat different approach: prove that BPL ⊆ P.

Solution Sketch. Let L be a BPL language and M the machine required
by the definition of BPL. On input x of length n, let C be the number of
configurations of M(·, x). Construct a C ×C matrix P such that P [c1, c2] = 1/2
if c2 is reachable from c1 in one step, and P [c1, c2] = 0 otherwise. For every t,
P t[c1, c2] is the probability of reaching configuration c2 from configuration c1 in
t steps, where P t is the matrix obtained by multiplying P with itself t times. By
computing all powers of P up to the running time of M(·, x) we can compute the
accepting probability of M(r, x), and decide if x ∈ L. This time the calculations
can be exact: each probability is an integer multiple of 1/2p(n), and so it can be
represented using a polynomial number of digits.

4. Show that SIZE(nO(1)) 6⊆ P.

Solution Sketch. Fix an enumeration M1,M2, . . . ,Mn, . . . of Turing machines.
Consider the language L that contains all strings x such that Mn halts on an empty
input, where n is the length of x. Then L is undecidable, and, in particular, it is not
in P. On the other hand, on each input length n, there is a very simple circuit of size
O(1) (that either accepts all inputs or rejects all inputs) that solves L on inputs of
length n.

5. Show that there is a language in SPACE(2nO(1)
) that does not belong to SIZE(2o(n)).

2

Solution Sketch. We know that for every sufficiently large n there is a function
f : {0, 1}n → {0, 1} such that, say, there is no circuit of size ≤ 2n/2 that computes
f . Let hn be the lexicographically first such function. (The lexicographic order is
normally defined over strings, but it is easy to adapt it to functions.) Then define
L to be the language that contains all strings x such that hn(x) = 1, where n is the
length of x. Then L cannot clearly be solved by circuits of size ≤ 2n/2 on inputs
of length n, but it can be solved in exponential space as follows: given x of length
n, enumerate all functions f : {0, 1}n → {0, 1} in lexicographic order until we find
a function that cannot be solved by circuits of size ≤ 2n/2. The first such function
that we encounter is hn(), and then we simply evaluate hn(x). We can enumerate
all functions by enumerating all possible truth-table, which can be done using O(2n)
space (after we are done considering a function, we re-use the same space to write
down the truth-table of the next function). In order to check if a given functionc can
be solved by a circuit of size 2n/2, it is enough to enumerate all circuits of size ≤ 2n/2,
using O(n · 2n/2) space, and verify if any of the circuits agrees with the function on
all inputs. This computation can certainly be done in 2O(n) space.

6. In the MAX SAT problem we are given a formula ϕ in conjunctive normal form and
we want to find the assignment of values to the variables that maximizes the number
of satisfied clauses. (For example, if ϕ is satisfiable, the optimal solution satisfies all
the clauses and the MAX SAT problem reduces to finding a satisfying assignment.)
Consider the following decision problem: given a formula ϕ in conjunctive normal
form and an integer k, determine if k is the number of clauses of ϕ satisfied by an
optimal assignment.

• Prove that this problem is in NP if and only if NP = coNP.

Solution Sketch. Suppose that MAX SAT is in NP, and let V (·, ·) be the
verifier for MAX SAT. Then we can deduce that the coNP-complete problem
UNSAT (where, given a CNF formula ϕ we want to decide if it is unsatisfiable) is
also in NP: a witness that ϕ is unsatisfiable is a pair (k, y), where k is an integer
smaller than the number of clauses of ϕ and y is such that V ((ϕ, k), y) accepts.
But if a coNP-complete problem belongs to NP, it follows that coNP = NP.
Suppose now that NP = coNP, and consider the language L that contains pairs
(ϕ, k) such that at least k clauses of ϕ can be satisfied, and the language L′ that
contains the pairs (ϕ, k) such that it is impossible to satisfy k or more clauses
of ϕ. By definition, L is in NP, and let V () be its verifier; also L′ is in coNP,
and, by the assumption, also in NP, and let V ′() be its verifier. We can now
put MAX SAT in NP by noting that a witness for (ϕ, k) ∈MAX SAT is a pair
(y, y′) such that V ((ϕ, k), y) and V ′((ϕ, k + 1), y′) both accept.

• Prove that this problem is in Σ2.

Solution Sketch. By definition, (ϕ, k) ∈MAX SAT if and only if

∃a.a satisfies k clauses of ϕ ∧ ∀a′.a′ satisfies ≤ k clauses of ϕ

3

which is logically equivalent to the Σ2 formulation

∃a.∀a′.(a satisfies k clauses of ϕ and a′ satisfies ≤ k clauses of ϕ)

7. Define EXP = DTIME(2nO(1)
). Prove that if EXP ⊆ SIZE(nO(1)) then EXP = Σ2.

Solution Sketch. Let L ∈ EXP and let M be the Turing machine that solves
L in time ≤ 2p(n) on inputs of length n, where n is the length of the input. Fix a
representation of the configurations of M(x); each configuration can be written using
c·2p(n)) bits for some constant c. There is a machine M ′ that, given a string x of length
n, and integers t ≤ 2p(n) and i ≤ c · 2p(n), outputs the i-th bit of the configuration
reached by M(x) after t steps. Furthermore, we can implement M ′ so that it runs in
time 2O(p(n)) on input (x, t, i), where n is the length of x. Since M ′ solves a decision
problem in EXP, there is a family of polynomial size circuits that simulate M ′. Let
q(n) be a polynomial upper bound to the size of these circuits.

Our Σ2 simulation of M , on input x, will “guess” a circuit C of size q(n), then it will
verify that for every i and t, the value of C(x, t, i) is consistent with the (constant
number of) values C(x, t− 1, ·) that it depends on. Finally, it will accept if and only
if C() predicts that after 2p(n) steps M(x) accepts.

x ∈ L iff ∃C.|C| ≤ q(|x|)
∀t ≤ 2p(|x|), i ≤ c · 2p(x)

C(x, t, i) is consistent with C(x, t− 1, ·) and
C(x, 2p(|x|), ·) describes an accepting configuration

(A few details are missing, for example one needs to treat the case t = 0 separately.)

8. Prove that ZPP=RP∩coRP.

Solution Sketch. We gave the proof in class.

9. Show that if NP ⊆ BPP then NP = RP.

Solution Sketch. It is enough to show that if NP ⊆ BPP then 3SAT∈ RP. Let
A be a BPP algorithm for 3SAT. Given a formula ϕ with n variables, we first run A
on ϕ. If A rejects, we reject. Otherwise, we try to construct a satisfying assignment
for ϕ one variable at a time. That is, we try instantiating x1 to 0, and then use A
to decide if the resulting formula is satisfiable: if so, then we permanently set x1 to
0 and proceed with x2; otherwise we set x1 to 1 and proceed with x2. If we manage
to construct a satisfying assignment we accept, otherwise we reject, and so on. If ϕ is
unsatisfiable, then we always reject. If ϕ is satisfiable, then we construct a satisfying
assignment and accept provided that the n + 1 invocations of A that we make are
all correct. We can ensure that this happens with high probability by replacing each
invocation of A with O(log n) independent ones and taking the majority answer.

4

10. Prove that SPACE(O(nlog n)) 6⊆ BPP.

Solution Sketch. Consider the language L that contains all pairs (〈M〉, x), where
M is a probabilistic machine, such that

Pr[M(〈M〉, x) rejects within n(log n)/3 steps] ≤ 1
2

We see that L ∈ SPACE(O(nlog n)) and we reach a contradiction if we assume L ∈
BPP.

11. Change the assumption of Theorem 12 in the notes of Lecture 8 to having a proba-
bilistic polynomial time algorithm that on input a formula with exactly one satisfying
assignment finds that assignment with probability at least 1/2. Prove that it still
follows that NP = RP.

Solution Sketch. Use the same proof: the probability of finding an assignment
becomes 1/16 instead of 1/8, and it is enough to set t = 11.

12. Let {Xn}n≥1 and {Yn}n≥1 be ensembles (sets) of random variables, where Xn and Yn

take values over {0, 1}n. Say that {Xn} and {Yn} are indistinguishable if for every
two polynomials p and q and for every large enough n we have that Xn and Yn are
(p(n), 1/q(n))-indistinguishable.

Prove that if {Xn} and {Yn} are computationally indistinguishable, and f is a length-
preserving (meaning that the length of the output is always equal to the length of the
input) polynomial time computable function, then {fn(Xn)} and {fn(Yn)} are also
computationally indistinguishable.

Solution Sketch. Let t(n) be a polynomial upper bound to the size of a circuit
that computes fn. Suppose that {fn(Xn)} and {fn(Yn)} are not computationally
indistinguishable. Then there are polynomials p(n) and q(n) such that, for infinitely
many n, fn(Xn) and fn(Yn) are not (p(n), 1/q(n))-indistinguishable, that is, there is
a circuit Cn of size ≤ p(n) such that

|Pr[Cn(fn(Xn)) = 1]−Pr[Cn(fn(Yn))]| ≥ 1/q(n) .

Considering that Cn(fn(·)) is computable by a circuit of size t(n) + p(n), we deduce
that there are infinitely many n such that Xn and Yn are not (t(n) + p(n), 1/q(n))-
indistinguishable, and so {Xn}n≥1 and {Yn}n≥1 are not indistinguishable.

13. Prove that there is an ensemble {Xn} that is computationally indistinguishable from
the ensamble of uniform distributions {Un}, even though only nlog n elements of {0, 1}n

have non-zero probability in Xn.

5

Solution Sketch. For every sufficiently large n we show that there is a multi-set
Sn of size nlog n such that the uniform disribution over S is (n(log n)/4, n−(log n)/4)-
indistinguishable from uniform.

Fix a circuit C, pick at random a multiset S by picking (with replacement) nlog n from
{0, 1}n. We want to compute

PrS [|Prx∼S [C(x) = 1]−Pr[C(Un) = 1]| ≥ ε]

Define p := Pr[C(Un) = 1] and N = nlog n, then, equivalently, we want to compute

Prx[||{x ∈ S : C(x) = 1}| − p ·N | ≥ ε ·N] .

Define random 0/1 variables X1, . . . , Xn where Xi = 1 iff C(xi) = 1, where xi is the
i-th element that we select to be in S. Then the Xi are independent, and each of
them has a probability p of being 1. If then follows from Chernoff bounds that

Prx[||{x ∈ S : C(x) = 1}| − p ·N | ≥ ε ·N] ≤ e−Ω(ε2N).

In particular, if we fix ε = n−(log n)/4, we have

PrS [|Prx∼S [C(x) = 1]−Pr[C(Un) = 1]| ≥ n−(log n)/4] ≤ e−Ω(n(log n)/2)

The number of circuits of size n(log n)/4 is eO((log n)2·n(log n)/4) which is much smaller
than eΩ(n(log n)/2), so even after taking a union bound we have

PrS [∃C.size(C) ≤ n(log n)/4 ∧ |Prx∼S [C(x) = 1]−Pr[C(Un) = 1]| ≥ n−(log n)/4] < 1

In particular, there exists a set S such that

∀C.size(C) ≤ n(log n)/4.|Prx∼S [C(x) = 1]−Pr[C(Un) = 1]| ≤ n−(log n)/4

and we let Xn be the uniform distribution over such a set S.

14. Prove that if pseudorandom generators of stretch 2n exist, then one-way functions
exist.

Solution Sketch. Let G be a pseudorandom generator of stretch 2n, we prove that
it is a one-way function. If it were not a one-way function, then there would a family
of polynomial size circuits Cn and a polynomial q(n) such that for infinitely many n

Prx[Cn(G(x)) = x′ : G(x′) = G(x)] ≥ 1/q(n)

Construct now a family of circuits C ′
n, still of polynomial size, such that C ′

n(y) = 1
if and only if G(Cn(y)) = y. Then we have Pr[C ′

n(G(x)) = 1] ≥ 1/q(n), while
Pr[C ′

n(y) = 1] ≤ 1/2n, contradicting the assumption that G is a pseudorandom
generator.

15. Prove that if a permutation f has a hard-core predicate B, then f is a one-way
permutation.

6

Solution Sketch. Let f be a permutation and B be a hard-core predicate for f .
Suppose that f is not one-way, then there are polynomials p() and q() such that for
infinitely many n there is a circuit Cn such that

Pr[Cn(f(x)) = x] ≥ 1/q(n)

Consider now the following probabilistic process: on input y of length n, we compute
x′ = Cn(y). If f(x′) = y then we output B(x′), otherwise we output a random bit.
The output of this process, with probability at least 1/2 + 1/2q(n), correctly equals
B(f (−1)(y)), and there is a fixed choice for the final random choice such that the
correctness probability is at least as good. For that fixed choice, the above described
process can be realized by a polynomial size circuit. This proves that B is not a
hard-core predicate for f , and we reach a contradiction.

16. Prove that if P = NP then there cannot be any pseudorandom generators, even of
stretch n + 1.

Solution Sketch. Suppose P = NP and let {Gn} be a family of polynomial time
computable functions mapping n bits into n + 1 bits. Let Cn be a circuit that on
input y outputs 1 if y = Gn(x) for some x and 0 otherwise. Since the family {Cn}
solves a problem in NP, that, by assumption, can be solved in polynomial time, Cn

can be realized as a family of polynomial size circuits.

We have Prx[Cn(G(x)) = 1] = 1, but Prr[Cn(r) = 1] ≤ 1/2 because each string r has
probability 1/2n+1 but only 2n of them are possible outputs of Gn. So we have

|Pr[Cn(Gn(x)) = 1]−Pr[Cn(r) = 1]| ≥ 1/2

where the Cn have polynomial size, and {Gn} cannot be a pseudorandom generator.

7

