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Notes on Reingold’s Theorem, Part II

Today we continue the proof that the undirected (s, t)-connectivity problem can be solved in
deterministic logarithmic space [Rei04]. We introduce the zig-zag graph product, an opera-
tion that can be used to reduce the degree of a graph without affecting much the eigenvalue
gap. A sequence of zig-zag and powering operations, starting from an arbitrary connected
graph, leads to a graph with a constant eigenvalue gap. The connectivity algorithm relies
on such a construction.

1 The Zig-Zag Graph Product

Recall that if G is an undirected graph and A is its normalized adjacency matrix (its
“random walk matrix”), and if we denote by λ1 ≥ λ2 ≥ · · · ≥ λn the eigenvalues of A, in
sorted order, then λ1 = 1 and we use the notation

λ(G) := max
i=2,...,n

|λi|

Furthermore, if G is d-regular, connected, and not bipartite, then λ(G) ≤ 1−1/dn2. Finally,
we use the notation

γ(G) := 1− λ(G)

and we call γ(G) the eigenvalue gap of G. Recall that we proved that the diameter of G is
at most log1/λ n, which is O( 1

γ log n), where n is the number of vertices. In particular, if G
is a graph with eigenvalue gap at least 1/2, then the diameter is at most log2 n.

The problem of constructing graphs with a large eigenvalue gap is very difficult and
it has been the subject of a lot of work. A recent construction of such graphs [RVW02]
introduces a graph product called the zig-zag.

If G and H are graphs with large eigenvalue gap, the zig-zag product define a new graph
G©z H that has still a large eigenvalue gap and is bigger than G and H. The point is that
one can use the product to start from very small graphs with large gap, that are easier to
construct, and then “bootstrap” them to get bigger and bigger ones.

For the product to work, G must be a regular graph, say, with N vertices and degree
D, and H must have D vertices, as many as the degree of G. If H is a d-regular graph,
then G©z H is a d2-regular graph with ND vertices. (It may help to think of N = 100, 000,
D = 1, 000 and d = 10 to get a sense of the parameters.)

In G©z H there is a vertex [v, a] for every vertex v of G and vertex a of H. There is an
edge between [v, a] and [w, b] in G©z H provided that there are vertices a′, b′ in H such that
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the edges (a, a′) and (b′, b) are in H, w is the a′-th neighbor of v in G, and v is the b′-th
neighbor of w in G. (This makes more sense given the picture I drew in class.)

In [RVW02] there are various formulas relating γ(G©z H) to γ(G) and λ(H). If we
restrict ourselves to special case γ(H) ≥ 1/2, then we have the following theorem:

If γ(H) ≥ 1
2
, then γ(G©z H) ≥ 3

8
γ(G) (1)

2 Combining Zig-Zag and Powering

Suppose now that H is a d-regular graph with d16 nodes (this choice will be clear later) and
with γ(H) ≥ 1/2. Let G be a d16-regular graph. Consider the graph G′ := (G©z H)8. (By
this notation, we mean the graph whose adjacency matrix is the 8-th power of the adjacency
matrix of (G©z H).) Then, we claim that

γ(G′) ≥ min
{

1
2

, 2γ(G)
}

(2)

and, furthermore, G′ is a graph with Nd16 vertices and degree d16. In other words, the
new graph G′ has a constant factor more vertices than G, the same degree as G, and an
eigenvalue gap than is either twice that of G or at least 1/2.

To prove that Equation 2 holds, first remember that if G is a graph, then λ(Gk) =
(λ(G))k and so γ(Gk) = 1− (1− γ(G))k. We prove Equation 2 by considering two cases. If
γ(G) ≥ 1/4, then γ(G©z H) ≥ 3/32 by Equation 1 and

γ((G©z H)8) = 1− (1− γ(G©z H))8 ≥ 1−
(

29
32

)8

= .545 . . . >
1
2

If γ(G) ≤ 1/4, then

γ((G©z H)8) = 1− (1− γ(G©z H))8 ≥ 8 · 3
8
γ(G)− 28

(
3
8
γ(G)

)2

≥ 2γ(G)

where we used the fact that (1 − ε)8 > 8ε −
(
8
2

)
ε2 for 0 < ε < 1. This completes the proof

of Equation 2.

3 Reingold’s Algorithm

As before, let H be a d-regular graph with d16 nodes and with γ(H) ≥ 1/2. Such a graph
exists for small values of d. In particular, d = 8 can be proved to be enough using the
probabilistic method. An explicit construction is known for d = 14.

Let G be a d16-regular graph G with n vertices that is connected and not bipartite.
Consider the following recursively defined family of graphs

G0 := G

Gi := (Gi−1©z H)8 .
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Then γ(Gi) ≥ min{1/2, γ(G) · 2i}. Since γ(G) ≥ 1/d16n2, we have that for t = log2 d16n2 =
O(log n) we have λ(Gt) ≥ 1/2.

The number of vertices of Gt is n ·
(
d16

)t, which is polynomial in n.
Finally, Gt can be constructed in log-space given G and t. More specifically, there is an

algorithm that, given a graph G with n vertices and degree d16, a graph H with d16 vertices
and degree d, an integer t, and the names of two vertices v and w of Gt, uses O(log n + t)
space and decides whether v and w are adjacent in Gt.

Suppose now that G is d16-regular graph that is not necessarily connected, but such
that each connected component is not bipartite. Then each connected component of G is a
connected, non-bipartite, regular graph. If we apply the above construction to a connected
component of G we obtain a graph with eigenvalue gap at least 1/2. Indeed, if we apply the
above construction to all of G, we can see that the result is the same as if we had applied
the construction to each connected component of G separately.

In conclusion, if G is a d16-regular graph with n vertices that has k connected com-
ponents, each non-bipartite, then Gt, where t = log2 d16n2, is a d16-regular graph with k
connected components, and each connected component of Gt is a connected graph with
eigenvalue gap at least 1/2.

If s and v are vertices in G, then let st and vt be vertices of Gt that “correspond” to s
and v. Such vertices can be defined recursively, by letting s0 := s, v0 = v, and then letting
si be one of the vertices of Gi in the block of vertices that replace si−1 (similarly for vi). By
induction, one can see that s and v are connected in G if and only if st and vt are connected
in Gt. Finally, deciding whether st and vt are connected in Gt is easy because we know that
the diameter of each connected component of Gt is at most log2 n · d16t = O(log n), where
n · d16t is the number of vertices of Gt. Since each connected component of Gt has degree
d16 = O(1) and diameter log2 n · d16t = O(log n), it follows that one can explore the entire
connected component of st, and verify whether vt is an element of it, using O(log n) space.

What we have described so far gives an O(log n) space algorithm to decide (s, t)-
connectivity in undirected graphs that are: (i) regular of degree d16 and (ii) such that
each connected component is not bipartite.

It is easy to reduce the general case to this special case. First, one can reduce (s, t)-
connectivity in general graph to (s, t)-connectivity in 3-regular graphs. This can be done
by replacing each vertex v of G of degree dv by a cycle of length dv, and then placing the
edges of G as a matching in the new graph. That is, if, in G, w is the i-th neighbor of v
and v is the j-th neighbor of w, then we put an edge between the i-th vertex in the cycle of
v and the j-th vertex in the cycle of w. Then we can add d16 − 3 self-loops to each vertex.
This way the graph cannot be bipartite, and it has become regular of degree d16.
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