
U.C. Berkeley — CS278: Computational Complexity Handout N19
Professor Luca Trevisan 11/10/2004

Notes for Lecture 19

In these notes we introduce Levin’s theory of average-case complexity.
This theory is still in its infancy: in these notes we will introduce the notion of “dis-

tributional problems,” discuss various formalizations of the notion of “algorithms that are
efficient on average,” introduce a reducibility that preserves efficient average-case solvabil-
ity, and finally prove that there is a problem that is complete for the distributional version
of NP under such reductions. It is still an open question how to apply this theory to the
study of natural distributional problems that are believed to be hard on average.

1 Distributional Problems

Definition 1 (Distributional Problem) A distributional problem is a pair 〈L, µ〉, where
L is a decision problem and µ is a distribution over the set {0, 1}∗ of possible inputs.

In other settings where average-case hardness is considered (e.g. in the study of one-way
functions) we normally describe the distribution of inputs as a collection of distributions
µ1, . . . , µn, . . . where µn is a distribution over the set {0, 1}n of inputs of a given input
length.1 There are various reasons why this single-distribution approach is convenient for
the purposes of this chapter. We will discuss it again later, but for now the basic intuition is
that we will discuss reductions where the length of the output is not a function of the length
of the input, so that sampling inputs from a fixed-length distribution and passing them to
a reduction does not produce a fixed-length distribution (unlike the case of cryptographic
reductions).

We will restrict to the study of distributional problems where µ is “polynomial-time
computable.” What do we mean by that? Fo all x ∈ {0, 1}∗, let

µ (x) =
∑
y≤x

Pr [y] . (1)

where ‘≤’ denotes lexicographic ordering. Then µ must be computable in poly (|x|) time.
Clearly this notion is at least as strong as the requirement that Pr [x] be computable in
polynomial time, because

Pr [x] = µ′ (x) = µ (x) − µ (x − 1) , (2)

x− 1 being the lexicographic predecessor of x. Indeed one can show that, under reasonable
assumptions, there exist distributions that are efficiently computable in the second sense
but not polynomial-time computable in our sense.

We can define the “uniform distribution” to be

Pr [x] =
1

|x| (|x| + 1)
2−|x|; (3)

1One can always reduce the approach of distinct distributions to the approach of this chapter by assuming
that µ first picks at random a certain input length n, and then it samples from µn.

1

that is, first choose an input size at random under some polynomially-decreasing distrib-
ution, then choose an input of that size uniformly at random. It is easy to see that the
uniform distribution is polynomial-time computable.

2 DistNP

We define the complexity class

DistNP = {〈L, µ〉 : L ∈ NP, µ polynomial-time computable} . (4)

There are at least two good reasons for looking only at polynomial-time computable
distributions.

1. One can show that there exists a distribution µ such that every problem is as hard on
average under µ as it is in the worst case. Therefore, unless we place some computa-
tional restriction on µ, the average-case theory is identical to the worst-case one.

2. Someone, somewhere, had to generate the instances we’re trying to solve. If we
place computational restrictions on ourselves, then it seems reasonable also to place
restrictions on whoever generated the instances.

It should be clear that we need a whole class of distributions to do reductions; that is,
we can’t just parameterize a complexity class by a single distribution. This is because a
problem can have more than one natural distribution; it’s not always obvious what to take
as the ‘uniform distribution.’

3 Reductions

Definition 2 (Reduction) We say that a distributional problem 〈L1, µ1〉 reduces to a
distributional problem 〈L2, µ2〉 (in symbols, 〈L1, µ1〉 ≤ 〈L2, µ2〉) if there exists a polynomial-
time computable function f such that:

1. x ∈ L1 iff f (x) ∈ L2.

2. There is a ε > 0 such that, for every x, |f(x)| = Ω(|x|ε).

3. For all y ∈ {0, 1}∗, ∑
x:f(x)=y

µ′1 (x) ≤ poly (|y|) µ′2 (y) . (5)

The first condition is the standard condition of many-to-one reductions in complexity
theory: it ensures that an algorithm that is always correct for L2 can be converted into an
algorithm that is always correct for L1. The second condition is a technical one, that is
necessary to show that the reduction preserves efficient-on-average algorithms. All known
reductions satisfies this condition naturally.

The third condition is called domination. To motivate this condition, consider that
we want reductions to preserve the existence of algorithms that are efficient on average.

2

Suppose that we have an algorithm A2 for problem L2 such that, when we pick y according
to distribution µ2, A(y) is efficient on average; if we want to solve L1 under distribution µ1,
then, starting from an input x distributed according to µ1(x), we compute f(x) and then
apply algorithm A2 to f(x). This will certainly be correct, but what about the running
time? Intuitively, it could be the case that A2 is very slow on some inputs, but such inputs
are unlikely to be sampled according to distribution µ2; the domination condition ensures
us that such inputs are also unlikely to be sampled when we sample x according to µ1 and
then consider f(x).

4 Polynomial-Time on Average

Given a problem 〈L, µ〉 and an algorithm A that runs in time t (x) on input x, what does
it mean to say that A solves 〈L, µ〉 in polynomial time on average? We will consider some
flawed definitions before settling on the best one and on an alternate one.

A first difficulty comes with the fact that we are dealing with a single distribution on
all possible inputs. The most intuitive choice of saying that A is efficient if

E[t(x)] is small

is problematic because the expectation could be infinite even if A runs in worst-case poly-
nomial time.

One can work around this difficulty by defining A to be polynomial provided that for
some constant c and for every sufficiently large n,

E[t(x)| |x| = n] ≤ nc

However we chose to define distributional problems and reducibility without separating
problems by input size, and we would run into several difficulties in separating them now.
Besides, it seems reasonable that there could be input lengths on which A takes a long
time, but that are generated with very low probability under µ; in such cases A may still
be regarded as efficient, but this is not taken into account in the above definition.

Our next attempt folds the polynomial running time into the single distribution by
defining A to be polynomial on average if there is a polynomial p such that

E
[

t(x)
p(|x|)

]
= O(1)

This definition is quite appealing, but is still subject to the fatal flaw of not being robust, in
that: (1) reductions do not preserve this definition of polynomial solvability on average and
(2) the definition is sensitive to trivial representation changes such as replacing a matrix
representation of a graph by an adjacency list.

To see why these problems arise, let µ be the uniform distribution, and let

t (x) = 2n if x =
−→
0 , t (x) = n2 otherwise. (6)

The average running time is about n2. But suppose now that n is replaced by 2n
(because of a change in representation, or because of the application of a reduction), then

t (x) = 22n if x =
−→
0 , t (x) = 4 · n2 otherwise. (7)

3

Similarly, if t(x) is replaced by t2(x), the average running time becomes exponential.
We now come to a satisfying definition.

Definition 3 (Polynomial on average) Suppose A is an algorithm for a distributional
problem 〈L, µ〉 that runs in time t(x) on input x. We say that A has polynomial running
time on average is there is a constant c such that

E

[
t(x)1/c

|x|

]
= O(1)

Notice, first, that this definition is satisfied by any algorithm that runs in worst-case
polynomial time. If t(x) = O(|x|c), then t(x)1/c = O(|x|) and the sum converges. More
interestingly, suppose t() is a time bound for which the above definition is satisfied; then an
algorithm whose running time is t′(x) = t(x)2 also satisfies the definition, unlike the case
of the previous definition. In fact we have the following result, whose non-trivial proof we
omit.

Theorem 1 If 〈L1, µ1〉 ≤ 〈L2, µ2〉 and 〈L2, µ2〉 admits an algorithm that is polynomial on
average, then 〈L1, µ1〉 also admits an algorithm that is polynomial on average.

There is an additional interesting property of the definition of polynomial of average:
there is a high probability that the algorithm runs in polynomial time.

Suppose that

E

[
t (x)1/c

|x|

]
= O (1) . (8)

and that we wish to compute Pr[t(x) ≥ k · |x|c]. Such a probability is clearly the same as

Pr[t(x)1/c ≥ k1/c|x|]
and by Markov’s inequality this is at most O(1/k1/c), which can be made fairly small by
picking k large enough. Since the algorithm runs in time at most knc for a subset of inputs
having probability 1−k−1/c, we see that our definition gives a smooth quantitative tradeoff
for how much time we need to solve an increasing fraction of inputs.

In the setting of one-way functions and in the study of the average-case complexity of the
permanent and of problems in EXP (with applications to pseudorandomness), we normally
interpret “average case hardness” in the following way: that an algorithm of limited running
time will fail to solve the problem on a noticeable fraction of the input. Conversely, we would
interpret average-case tractability as the existence of an algorithm that solves the problem
in polynomial time, except on a negligible fraction of inputs. This leads to the following
formal definition.

Definition 4 (Heuristic polynomial time) We say that an algorithm A is a heuristic
polynomial time algorithm for a distributional problem 〈L, µ〉 if A always runs in polynomial
time and for every polynomial p ∑

x:A(x) 6=χL(x)

µ′(x)p(|x|) = O(1)

4

In other words, a polynomial time algorithm for a distributional problem is a heuristic if the
algorithm fails on a negligible fraction of inputs, that is, a subset of inputs whose probability
mass is bounded even if multiplied by a polynomial in the input length. It might also make
sense to consider a definition in which A is always correct, although it does not necessarily
work in polynomial time, and that A is heuristic polynomial time if there is a polynomial
q such that for every polynomial p,

∑
x∈Sq

µ′(x)p(|x|) = O(1), where Sq is the set of inputs
x such that A(x) takes more than q(|x|) time. Our definition is only more general, because
from an algorithm A as before one can obtain an algorithm A satisfying Definition 4 by
adding a clock that stops the computation after q(|x|) steps.

The definition of heuristic polynomial time is incomparable with the definition of average
polynomial time. For example, an algorithm could take time 2n on a fraction 1/nlog n of the
inputs of length n, and time n2 on the remaining inputs, and thus be a heuristic polynomial
time algorithm with respect to the uniform distribution, while not beign average polynomial
time with respect to the uniform distribution. On the other hand, consider an algorithm
such that for every input length n, and for 1 ≤ k ≤ 2n/2, there is a fraction about 1/k2 of the
inputs of length n on which the algorithm takes time Θ(kn). Then this algorithm satisfies
the definition of average polynomial time under the uniform distribution, but if we impose
a polynomial clock there will be an inverse polynomial fraction of inputs of each length on
which the algorithm fails, and so the definition of heuristic polynomial time cannot be met.

It is easy to see that heuristic polynomial time is preserved under reductions.

Theorem 2 If 〈L1, µ1〉 ≤ 〈L2, µ2〉 and 〈L2, µ2〉 admits a heuristic polynomial time algo-
rithm, then 〈L1, µ1〉 also admits a heuristic polynomial time algorithm.

Proof: Let A2 be the algorithm for 〈L2, µ2〉, let f be the function realizing the reduction,
and let p be the polynomial witnessing the domination property of the reduction. Let c and
ε be such that for every x we have |x| ≤ c|f(x)|1/ε.

Then we define the algorithm A1 than on input x outputs A2(f(x)). Clearly this is a
polynomial time algorithm, and whenever A2 is correct on f(x), then A1 is correct on x.
We need to show that for every polynomial q∑

x:A2(f(x)) 6=χL2
(f(x))

µ′1(x)q(|x|) = O(1)

and the left-hand side can be rewritten as∑
y:A2(y) 6=χL2

(y)

∑
x:f(x)=y

µ′1(x)q(|x|)

≤
∑

y:A2(y) 6=χL2
(y)

∑
x:f(x)=y

µ′1(x)q(c · |y|1/ε))

≤
∑

y:A2(y) 6=χL2
(y)

µ′2(y)p(|y|)q′(|y|)

= O(1)

where the last step uses the fact that A2 is a polynomial heuristic for 〈L2, µ2〉 and in the
second-to-last step we introduce the polynomial q′(n) defined as q(c · n1/ε)

5

2

5 Existence of Complete Problems

We now show that there exists a problem (albeit an artificial one) complete for DistNP.
Let the inputs have the form

〈
M,x, 1t, 1l

〉
, where M is an encoding of a Turing machine

and 1t is a sequence of t ones. Then we define the following “universal” problem U .

• Decide whether there exists a string y such that |y| ≤ l and M (x, y) accepts in at
most t steps.

That U is NP-complete follows directly from the definition. Recall the definition of
NP: we say that L ∈ NP if there exists a machine M running in t = poly (|x|) steps such
that x ∈ L iff there exists a y with y = poly (|x|) such that M (x, y) accepts. Thus, to
reduce L to U we need only map x onto R (x) =

〈
M,x, 1t, 1l

〉
where t and l are sufficiently

large bounds.
To give a reduction that satisfies the domination condition is indeed harded. Let 〈L, µ〉 ∈

DistNP. Define a uniform distribution over the
〈
M,x, 1t, 1l

〉
as follows:

µ′
(〈

M,x, 1t, 1l
〉)

=
1

|M | (|M | + 1) 2|M | ·
1

|x| (|x| + 1) 2|x|
· 1
(t + l) (t + l + 1)

. (9)

The trouble is that, because of the domination condition, we can’t map x onto R (x) if
µ′ (x) > poly (|x|) 2−|x|. We work around this problem by compressing x to a shorter string
if µ′ (x) is large. Intuitively, by mapping high-probability strings onto shorter lengths, we
make their high probability less conspicuous. The following lemma shows how to do this.

Lemma 3 Suppose µ is a polynomial-time computable distribution over x. Then there
exists a polynomial-time algorithm C such that

1. C is injective: C (x) 6= C (y) iff x 6= y.

2. |C (x)| ≤ 1 + min
{
|x| , log 1

µ′(x)

}
.

Proof: If µ′ (x) ≤ 2−|x| then simply let C (x) = 0x, that is, 0 concatenated with x. If,
on the other hand, µ′ (x) > 2−|x|, then let C (x) = 1z. Here z is the longest common
prefix of µ (x) and µ (x − 1) when both are written out in binary. Since µ is computable
in polynomial time, so is z. C is injective because only two binary strings s1 and s2 can
have the longest common prefix z; a third string s3 sharing z as a prefix must have a longer
prefix with either s1 or s2. Finally, since µ′ (x) ≤ 2−|z|, |C (x)| ≤ 1 + log 1

µ′(x) . 2

Now the reduction is to map x onto R2 (x) =
〈
M, C (x) , 1t, 1l+|x|

〉
. Here M is a

machine that on input z, x, y checks that C (x) = z (i.e., that x is a valid decoding of z)
and that M (x, y) accepts. The running time of M is t. Clearly x ∈ L iff M accepts. To

6

show that domination holds, let µ2′ (x) = Pr [R2 (x)] . Then, since the map is one-to-one,
we need only show that µ′ (x) ≤ poly (|x|) µ′2 (x). Since t = O (poly (t)),

µ′2 (x) =
1

O
(∣∣M ∣∣2) 2|M| ·

1

O
(
|C (x)|2

)
2|C(x)|

· 1
O (t + l + |x|)2

≥ poly (|x|) max
(
2−|x|, µ′ (x)

)
≥ poly (|x|) µ′ (x)

and we are done.
Note that, since we mapped longer inputs to shorter ones, we could not have done this

reduction input-length-wise.

6 Polynomial-Time Samplability

Definition 5 (Samplable distributions) We say that a distribution µ is polynomial-
time samplable if there exists a probabilistic algorithm A, taking no input, that outputs x
with probability µ′ (x) and runs in poly (|x|) time.

Any polynomial-time computable distribution is also polynomial-time samplable, pro-
vided that for all x,

µ′ (x) ≥ 2− poly(|x|) or µ′ (x) = 0. (10)

For a polynomial-time computable µ satisfying the above property, we can indeed construct
a sampler A that first chooses a real number r uniformly at random from [0, 1], to poly (|x|)
bits of precision, and then uses binary search to find the first x such that µ (x) ≥ r.

On the other hand, under reasonable assumptions, there are efficiently samplable dis-
tributios µ that are not efficiently computable.

In addition to DistNP, we can look at the class

〈NP,P-samplable〉 = {〈L, µ〉 : L ∈ NP, µ polynomial-time samplable} . (11)

A result due to Impagliazzo and Levin states that if 〈L, µ〉 is DistNP-complete, then
〈L, µ〉 is also complete for the class 〈NP,P-samplable〉.

This means that the completeness result established in the previous section extends
to the class of NP problems with samplable distributions. The completeness, however, is
proved under a different notion of reducibility, that preserves heuristic but not average
polynomial time algorithms.

7 References

Levin’s theory of average-case complexity was introduced in [Lev86]. Ben-David et al. [BDCGL92]
prove several basic results about the theory. Impagliazzo and Levin [IL90] show that the
theory can be generalized to samplable distributions. Impagliazzo [Imp95] wrote a very
clear survey on the subject. Another good reference is a survey paper by Goldreich [Gol97].

7

References

[BDCGL92] Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the
theory of average case complexity. Journal of Computer and System Sciences,
44(2):193–219, 1992. 7

[Gol97] Oded Goldreich. Notes on Levin’s theory of average-case complexity. Technical
Report TR97-058, Electronic Colloquium on Computational Complexity, 1997.
7

[IL90] Russell Impagliazzo and Leonid Levin. No better ways to generate hard NP
instances than picking uniformly at random. In Proceedings of the 31st IEEE
Symposium on Foundations of Computer Science, pages 812–821, 1990. 7

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proceed-
ings of the 10th IEEE Conference on Structure in Complexity Theory, pages
134–147, 1995. 7

[Lev86] Leonid Levin. Average case complete problems. SIAM Journal on Computing,
15(1):285–286, 1986. 7

8

Exercises

1. For a parameter c, consider the distribution Dn,cn over instances of 3SAT with n
variables generated by picking cn times independently a random a clause out of the
8
(
n
3

)
possible clauses that can be constructed from n variables. (Note that the same

clause could be picked more than once.) Let Dc be the distribution obtained by first
picking a number n with probability 1/n(n + 1) and then sampling from Dn,cn.

(a) Show that an instance from Dn,cn is satisfiable with probability at least (7/8)cn

and at most 2n · (7/8)cn.

(b) Argue that, using the definition given in this lecture, D15 cannot be reduced to
D30.
[Hint: take a sufficiently large n, and then look at the probability of satisfiable
instances of length n under D15 and the probability that their image is generated
by D30.]

9

	Distributional Problems
	DistNP
	Reductions
	Polynomial-Time on Average
	Existence of Complete Problems
	Polynomial-Time Samplability
	References

