
U.C. Berkeley — CS278: Computational Complexity Handout N15
Professor Luca Trevisan 10/27/2004

Notes for Lecture 15

Notes written 12/07/04

Learning Decision Trees

In these notes it will be convenient to denote bits using the set {−1, 1} instead of {0, 1}.

1 Decision Trees

A decision tree accepts or rejects input strings x1, . . . , xn and can be described as a directed
tree where every internal node has two children. The computational path begins at the
root. Each non-final vertex is labeled with a variable xi and has two outgoing edges, one
labeled 1 and the other −1. The path follows edge b such that xi = b, and ends at a leaf.
Each leaf is labeled −1 or 1. Such a label is called the label of the leaf. The output of a
decision tree T on input x is the value of the leaf reached in the computational path of T
given x.

The size of a decision tree is the number of nodes. Note that in a tree where every
internal node has exactly two children it is always true that the number of internal vertices
is equal to the number of leaves minus 1. Therefore measuring size in terms of number of
internal vertices, number of leaves, or total number of vertices are all equivalent measures
to within a constant factor.

2 Fourier Analysis

For every S ⊆ {1, . . . , n}, define the function uS : {−1, 1}n → R as

uS(x1, . . . , xn) =
∏
i∈S

xi

If S = ∅, then we define u∅(x) = 1 for every x.
Given two functions f, g : {−1, 1}n → R, define their inner product as

f · g =
1
2n

f(x)g(x) = Ex[f(x)g(x)]

Then we have that for every set S

uS · uS = 1

In fact, more generally, f · f = 1 for every function f : {−1, 1}n → {−1, 1}.
Furthermore, if S 6= T , we have

uS · uT = 0

1

Which implies that the functions uS are linearly independent over the reals. Indeed, if
there were a linear combination

uS =
∑
T 6=S

αT uT

then we would also have

1 = uS · uS = (
∑
T 6=S

αT uT) · uS =
∑
T 6=S

αT uT · uS = 0

The set of functions f : {−1, 1}n → R is a 2n-dimensional vector space over the reals,
and since there are 2n functions uS , all linearly independent, they must form a basis. Indeed,
with respect to the inner product we have defined, the uS form an orthonormal basis.

Every function f : {−1, 1}n → {−1, 1} can then be written as a linear combination

f(x) =
∑
S

f̂SuS(x)

of the functions uS . The coefficients f̂S are called the Fourier coefficients of f .
We will need a few properties of the coefficients. First, we note that

f̂S = f · uS (1)

Which is a standard property of inner-product spaces with an orthonormal basis.
Next, we have

Lemma 1 (Parseval’s Equality) For every function f : {−1, 1}n → {−1, 1},∑
S

f̂2
S = Ex[f2(x)] .

In particular, if f : {−1, 1}n → {−1, 1} is boolean, then
∑

S f̂2
S = 1.

Finally, if f : {−1, 1}n → {−1, 1} is a boolean function, then

f̂S = E[f(x)uS(x)] = Pr[f(x) = uS(x)]−Pr[f(x) 6= uS(x)] = 2Pr[f(x) = uS(x)]− 1 (2)

Note also that uS(x1, . . . , xn) =
⊕

i∈S xi if we adopt the convention that 1 is False and
−1 is True. Therefore, f̂S ≥ ε if and only if f has agreement at least 1/2 + ε/2 with the
“linear” function

⊕
i∈S xi (where we mean linear with respect to operations over bits, not

linear over the reals).
This observation, together with Parseval’s equality, implies that there are at most 1/ε2

linear functions that have agreement at least 1/2 + ε/2 with a given boolean function.
We can then formulate the following version of the Goldreich-Levin theorem [GL89].

Lemma 2 (Goldreich-Levin, revised form) There is a probabilistic algorithm GL that
given oracle access to a function f : {0, 1}n → {0, 1} and given a threshold parameter τ > 0,
an accuracy parameter γ > 0 and a confidence parameter δ > 0, runs in time polynomial in
n, 1/τ , 1/γ and log 1/δ, and outputs a list of sets S1, . . . , St and of numbers f̄S1 , . . . , f̄St,
such that, with probability at least 1− δ the following conditions hold:

2

• Every set S such that |f̂S | ≥ τ is in the list;

• For every set S in the list, |f̂S − f̄S | ≤ γ.

Proof: In the standard version, the Goldreich-Levin algorithm is given a parameter ε
and it produces a list of size O(1/ε2) such that, for each S such that f̂S ≥ 2ε, there is a
probability at least 3/4 that S is in the list.

We first run the Goldreich-Levin algorithm with parameter τ/2 independently O(log 1/τδ)
times, and take the union of the lists. Now, for each of the ≤ 1/τ2 sets S such that f̂S ≥ τ ,
the set S has a probability at most 1/4 of being missed in each iteration, and a probability
at most, say, τ2δ/4 of being missed every time. By a union bound, there is a probability at
least 1− δ/4 that the final list contains every set S such that f̂S ≥ τ .

We then repeat the same operations, but using −f as an oracle. This gives another
list of size O(τ−2 log τ−1δ−1 that contains all the sets S such that f̂S ≤ −τ , except with
probability at most δ/4.

We take the union of the two lists, and define it to be L. Except with probability at
most δ/2, the list satisfies the first condition.

For every set S ∈ L, we pick t = O(γ−2 log L/δ) sample points x1, . . . , xt in {−1, 1}n,
and define

f̄S =
1
t

∑
i

f(xi)uS(xi) (3)

By Chernoff bounds, there is a probability at most δ/2L that f̄S differs from f̂S by more
than γ. Taking a union bound over the sets, we see that the numbers f̄S satisfy the second
condition, except with probability at most δ/2. 2

3 Overview of the Proof

Our main result is the following.

Theorem 3 There is a probabilistic learning algorithm A that given oracle access to a
function f : {0, 1}n → {0, 1} that can be computed by a decsion tree of size S, and given S
and parameters ε, δ > 0, runs in time polynomial in n, S, 1/ε, log 1/δ and outputs a circuit
C that, with probability at least 1− δ, is ε-close to f .

We prove it in two steps. We show that every function whose Fourier coefficients satisfy
a certain condition can be efficiently learned, and then we show that functions computed
by small decision trees satisfy the condition.

Lemma 4 There is a probabilistic learning algorithm A that given oracle access to a func-
tion f : {0, 1}n → {0, 1}, given a number m such that∑

S

|f̂S | ≤ m

and given ε, δ > 0, runs in time polynomial in n, m, 1/ε, log 1/δ and outputs a circuit C
that, with probability at least 1− δ, is ε-close to f .

3

The number
∑

S |f̂S | is called the `1-norm of the function f , and is also denoted by
||f ||1. Lemma 4 says that functions of polynomial `1-norm can be learned in polynomial
time.

Lemma 5 If f can be computed by a decision tree of size S, then the `1 norm of f is at
most S.

4 Proof of Lemma 4

We fix τ = ε/2L. If ` = O(τ−2 log(τ−1δ−1) is an upper bound to the size of the list returned
by the Goldreich-Levin algorithm with threshold τ and confidence δ, then we fix γ =

√
ε/2`

and we run the Goldreich-Levin algorithm with threshold τ , confidence δ and accuracy γ.
We find a list L of sets and values f̄S for each set in the list such that, with probability
≥ 1− δ over the internal coin tosses of the algorithm, we have:

• Every set S such that |f̂S | ≥ τ is in the list;

• For every set S in the list, |f̂S − f̄S | ≤ γ.

Then we define the function h(x) =
∑

S∈L f̄SuS . The Fourier coefficients of the difference
d(x) := f(x)− h(x) are as follows.

• If S 6∈ L, then ĥS = 0 and so d̂S = f̂S , and also |d̂S | = |f̂S | ≤ τ .

• If S ∈ L, then |ĥS | ≤ γ.

We now want to estimate E[(f(x)− h(x))2], which is a measure of how good is h as an
approximation to f . We have

E[(f(x)− h(x))2] = E[d2(x)]

=
∑
S

d̂2
S

=
∑
S 6∈L

d̂2
S +

∑
S∈L

d̂2
S

≤ τ
∑
S 6∈L

|d̂S |+
∑
S∈L

γ2

≤ τm + |L|γ2

≤ ε

Define g : {−1, 1}n → {−1, 1} such that g(x) = 1 if h(x) ≥ 0 and g(x) = −1 if h(x) < 0.
We see that

Pr[g(x) 6= f(x)] ≤ Ex[(f(x)− h(x))2] ≤ α + ε

because every x such that g(x) 6= f(x) must also be such that |f(x) − h(x)| ≥ 1 and so
(f(x)− h(x))2 ≥ 1.

We output the circuit that computes g.

4

5 Proof of Lemma 5

First note that if f, g, h : {−1, 1}n → R are functions such that f = g+h, then f̂S = ĝS + ĥS

for every set S, and we have
||f ||1 ≤ ||g||1 + ||h||1 (4)

Let f be a function computed by a decision tree T with m leaves. We assume that tests
are never repeated in a computational path of T , otherwise we can get a smaller tree T for
f satisfying such a property.

For every leaf v of the decision tree, let val(v) be the output associated with that leaf,
d(v) the depth of v and Iv the set of inputs x such that computation of T on input x
ends at v. The set Iv clearly contains a 1/2d(v) fraction of {−1, 1}n (this is where we are
using the assumption that in each computational path we test distinct inputs). We also
define var(v) ⊆ {1, . . . , n} the be the set of indices i such that a test for xi is in the path
from the root to v. Note that d(v) = |var(v)|. Finally, we define fv(x) to be val(v) if the
computation of T on input x ends at v, and zero otherwise.

By definition:
f(x) =

∑
vleaf

fv(x)

For a set S and a leave v,

f̂v
S = Exfv(x)uS(x) =

1
2d(v)

Ex∈Ivf
v(x)uS(x) =

1
2d(v)

val(v)Ex∈IvuS(x)

From which we see that f̂v
S = 0 if S 6⊆ var(v), and |f̂v

S | = 1 if S ⊆ var(v). Since there are
2d(v) subsets of var(v), we get

||fv||1 =
∑
S

|f̂v
S | =

∑
S⊆var(v)

1
2d(v)

= 1

And so

||f ||1 ≤
∑
vleaf

||fv||1 ≤ m

6 References

The results of these notes are due to Kushilevitz and Mansour [KM93].

References

[GL89] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In
Proceedings of the 21st ACM Symposium on Theory of Computing, pages 25–32,
1989. 2

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier
spectrum. SIAM Journal on Computing, 22(6):1331–1348, 1993. 5

5

	Decision Trees
	Fourier Analysis
	Overview of the Proof
	Proof of [learnlone]Lemma 1
	Proof of [btlone]Lemma 2
	References

