U.C. Berkeley — CS278: Computational Complexity Handout N14 v0.9
Professor Luca Trevisan 10/25/2002

Notes for Lecture 14 v0.9

These notes are in a draft version. Please give me any comments you may have, because
this will help me revise them.

Today we will prove the Goldreich-Levin theorem:

Theorem 1 If f:{0,1}" — {0,1}" is a one-way permutation then B(z,r) = z-r =Y, z;r;
(mod 2) is a hardcore predicate for f'(xz,r) = f(x),r.

In other words, given only f(z) and r it is hard to compute z - 7.
The asymptotic version of the Theorem follows from the following finite version, that
we state directly in the counterpositive direction.

Theorem 2 Let f: {0,1}" — {0,1}" be a bijection computable by a circuit of size t, and
suppose that there is a circuit C' of size S such that

Pr, . [C(f(zx),r)=2-1]> - +¢€

~— M| —

Then there is a circuit C' of size O((S +t) - poly(n,1/€)) such that

Pr.[C'(f(z)) = 2] =

e

In turn, Theorem 2 follows from the existence of the following algorithm.

Lemma 3 There is a probabilistic algorithm that, given a parameter € and oracle access
to a function g : {0,1}" — {0,1}, runs in time O(n%¢ *logn), makes O(ne~*logn) oracle
accesses, and outputs a list of O(1/€?) elements of {0,1}".

If x is such that Pr,[B(r) =z -r] > % + €, then there is a probability at least 1/2 that x
s in the output list.

1 Proof of Theorem 2 Using Lemma 3

From the assumption that

1
Pro,[C(f(),r) = 1] > § +e
it follows that
Pr, |Pr,[C(f(z),r) =z -] > -+ 5| > &
U o -2 272
Let us call an x such that Pr,.[C(f(x),r) =z -r] > 1/2+¢€¢/2 a good z, and, for a given
x, let us denote by B, the function defined as B,(r) = C(f(z),r).

For a good =z, if we apply the algorithm of Lemma 3 to the function B, with parameter
€/2, we obtain a list that, with probability at least 1/2, contains z.

Consider now the following algorithm: given a string y, define B(r) := C(y,r) and
run the algorithm of Lemma 3 with function B() and parameter €¢/2. Once the algorithm
outputs a list z!, 22, ... ,xo(1/62), compute f(x') for each i, and output the x* such that
f(x?) =y, if any.

If we pick z at random and give f(x) to the above algorithm, there is a probability
at least €/2 that x is good and, if so, there is a probability at least 1/2 that z is in the
list. Therefore, there is a probability at least €/4 that the algorithm inverts f(), where the
probability is over the choices of x and over the internal randomness of the algorithm. In
particular, there is a fixed choice of the internal randomness of the algorithm that results
in inverting f() on an €/4 fraction of the inputs. Finally, we convert the algorithm into a
circuit, and the resulting circuit is C”.

2 Proof of Lemma 3

2.1 A Special Case First

We start by considering the simpler case in which we are given oracle access to a function
B() such that Pr,[B(r) = x -r] > 7/8 and we want to find =.

If we denote by e; the vector that has a 1 in the ¢-th coordinate and Os in other coordinate,
we see that x; = = - ¢;. Furthermore, for every r, we have x; = z - (r ® ¢;) ® x - r because of
the linearity of the - operator and of the fact that r @ r is the all zero vector.

Consider now the process of picking a random r and computing B(r@e;)® B(r). Except
with probability at most 1/8, B(r @ e;) = = - (r @ e;) and, except with probability at most
1/8, B(r) = x - r. Therefore, with probability at least 3/4,

Br@e)®B(r)=xz-(rde)®x-r=ux;

This suggests the following algorithm:

Algorithm A%:
for : :=1ton do
pick k = O(logn) random elements r',...,r* € {0,1}"
compute:
B(r' @ ey) @ B(r!)
B(r? @ e2) @ B(r?)
B(r* @ e,) @ g(r™)
assign to x; the value occurring in the majority of these computations
return «

To analyze the algorithm, note that, for a particular value of i, we expect to get the right
value of x; in a fraction 3/4 of the k trials, and the algorithm derives the correct value of

x; provided that more than half of the k trials are correct. Then, by a Chernoff bound,
the probability of estimating z; incorrectly is e~(*). We can then choose k = O(logn) and
make sure that the error probability is at most, say, 1/100n, and hence we conclude that
the output of the algorithm is correcgt with probability at least 99/100.

We note that the running time of this program is O(n%k) = O(n?logn) and that it
makes O(nk) = O(nlogn) oracle accesses.

2.2 The General Case

Consider now the general case. We are given an oracle B() such that B(r) = = - r for
an 1/2 + € fraction of the r. Our goal will be to use B() to simulate an oracle that has
agreement 7/8 with z - r, so that we can use the algorithm of the previous section to find
x. We perform this “reduction” by “guessing” the value of x - r at a few points.

We first choose ¢ random points 71 ...7t € {0,1}" where ¢t = O(1/€?). For the moment,
let us suppose that we have “magically” obtained the values - r',..., 2 - 7*. Then define
B'(r) as the majority value of:

- OBror) j=1,2,...,t (1)

For each j, the above expression equals x - r with probability at least % + € (over the choices
of 7) and by choosing t = O(1/¢?) we can ensure that

31
Prr,rl,...,'rt [B/(T') =Z: T‘] > 372 (2)
from which it follows that
Pr. . |Pr. [B'(r)=z-7] > ! > § (3)
rl...r =3 =12

Consider the following algorithm.

Algorithm GL-First-Attempt:
pick 7', ... 7t € {0,1}* where t = O(1/€?)
for all by,...,b; € {0,1}
define B; , (r) as majority of: b; & B(r & /)
apply Algorithm A% to By, 4,
add result to list

The idea behind this program is that we do not in fact know the values - 77, but we
can “guess” them by considering all choices for the bits b;. If B(r) agrees with « - r for at
least a 1/2 + € fraction of the rs, then there is a probability at least 3/4 that in one of the
iteration we invoke algorithm Ar with a simulated oracle that has agreement 7/8 with x - r.
Therefore, the final list contains © with probability at least 3/4 —1/100 > 1/2.

The obvious problem with this algorithm is that its running time is exponential in
t = O(1/€?) and the resulting list may also be exponentially larger than the O(1/e?) bound
promised by the Lemma.

To overcome these problems, consider the following similar algorithm.

Algorithm GL:

pick 71, ... 7l € {0,1}* where I = log O(1/¢?)

define 75 := P rJ for each non-empty S C {1,...,1}

for all by,...,b; € {0,1}
define bg := P, ¢ b; for each non-empty S C {1,...,1}
define By , (r) as majority over non-empty S C {1,...,1} of bs & B(r & rs)
run Algorithm A r with oracle By,
add result to list

Let us now see why this algorithm works. First we define, for any nonempty S C
{1,...,1},rg = @jes 7. Then, since !, ..., 7! € {0,1}* are random, it follows that for any
S # T, rg and rp are independent and uniformly distributed. Now consider an x such that
z-r and B(r) agree on a 3 + € fraction of the values of 7. Then for the choice of {b;} where
bj = x -1’ for all j, we have that

bs =x-rg

for every non-empty S. In such a case, for every S and every r, there is a probability at
least % + €, over the choices of the 77 that

bs ® B(r@®rs)=x-1,

and these events are pair-wise independent. Note the following simple lemma.

Lemma 4 Let Ry,...,R; be a set of pairwise independent 0 — 1 random variables, each of
which is 1 with probability at least 5 + €. Then Pr[y, Ry > /2] > 1 — .

PROOF: Let R = Ry + - -+ R;. The variance of a 0/1 random variable is at most 1/4, and,
because of pairwise independence, Var[R] = Var[R; + ... + Ry = >, Var[R;] < t/4.
We then have

Var|R]

Pr[R <t/2] <Pr[|R - E[R]| > et] < 242

Lemma 4 allows us to upper-bound the probability that the majority operation used
to compute B’ gives the wrong answer. Combining this with our earlier observation that
the {rg} are pairwise independent, we see that choosing | = 2log1/e + O(1) suffices to
ensure that By, (r) and z - r have agreement at least 7/8 with probability at least 3/4.
Thus we can use Algorithm A% to obtain x with high probability. Choosing [as above

ensures that the list generated is of length at most 2/ = O(1/¢?) and the running time is

then O(e~*-n?logn) with O(¢~* - nlogn) oracle accesses, due to the O(1/€?) iterations of

Algorithm A7, that makes O(nlogn) oracle accesses, and to the fact that one evaluation
8

of B'() requires O(1/¢?) evaluations of B().

3 References

The results of this lecture are from [GL89]. Goldreich and Levin initially presented a
different proof. They credit the proof with pairwise independence to Rackoff. Algorithm
Az is due to Blum, Luby and Rubinfeld [BLR93]. The use of Algorithm GL-First-Attempt
assa motivating example might be new to these notes. (Or, actually, to the Fall 2001 notes
for this class.)

References

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences, 47(3):549-595,
1993. Preliminary version in Proc. of STOC’90. 5

[GL89] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In
Proceedings of the 21st ACM Symposium on Theory of Computing, pages 25-32,
1989. 5

