
U.C. Berkeley — CS278: Computational Complexity Handout N14 v0.9
Professor Luca Trevisan 10/25/2002

Notes for Lecture 14 v0.9

These notes are in a draft version. Please give me any comments you may have, because
this will help me revise them.

Today we will prove the Goldreich-Levin theorem:

Theorem 1 If f : {0, 1}n → {0, 1}n is a one-way permutation then B(x, r) = x·r =
∑

i xiri

(mod 2) is a hardcore predicate for f ′(x, r) = f(x), r.

In other words, given only f(x) and r it is hard to compute x · r.
The asymptotic version of the Theorem follows from the following finite version, that

we state directly in the counterpositive direction.

Theorem 2 Let f : {0, 1}n → {0, 1}n be a bijection computable by a circuit of size t, and
suppose that there is a circuit C of size S such that

Prx,r[C(f(x), r) = x · r] ≥ 1
2

+ ε

Then there is a circuit C ′ of size O((S + t) · poly(n, 1/ε)) such that

Prx[C ′(f(x)) = x] ≥ ε

4

In turn, Theorem 2 follows from the existence of the following algorithm.

Lemma 3 There is a probabilistic algorithm that, given a parameter ε and oracle access
to a function g : {0, 1}n → {0, 1}, runs in time O(n2ε−4 log n), makes O(nε−4 log n) oracle
accesses, and outputs a list of O(1/ε2) elements of {0, 1}n.

If x is such that Prr[B(r) = x · r] ≥ 1
2 + ε, then there is a probability at least 1/2 that x

is in the output list.

1 Proof of Theorem 2 Using Lemma 3

From the assumption that

Prx,r[C(f(x), r) = x · r] ≥ 1
2

+ ε

it follows that

Prx

[
Prr[C(f(x), r) = x · r] ≥ 1

2
+

ε

2

]
≥ ε

2

Let us call an x such that Prr[C(f(x), r) = x · r] ≥ 1/2 + ε/2 a good x, and, for a given
x, let us denote by Bx the function defined as Bx(r) = C(f(x), r).

1

For a good x, if we apply the algorithm of Lemma 3 to the function Bx with parameter
ε/2, we obtain a list that, with probability at least 1/2, contains x.

Consider now the following algorithm: given a string y, define B(r) := C(y, r) and
run the algorithm of Lemma 3 with function B() and parameter ε/2. Once the algorithm
outputs a list x1, x2, . . . , xO(1/ε2), compute f(xi) for each i, and output the xi such that
f(xi) = y, if any.

If we pick x at random and give f(x) to the above algorithm, there is a probability
at least ε/2 that x is good and, if so, there is a probability at least 1/2 that x is in the
list. Therefore, there is a probability at least ε/4 that the algorithm inverts f(), where the
probability is over the choices of x and over the internal randomness of the algorithm. In
particular, there is a fixed choice of the internal randomness of the algorithm that results
in inverting f() on an ε/4 fraction of the inputs. Finally, we convert the algorithm into a
circuit, and the resulting circuit is C ′.

2 Proof of Lemma 3

2.1 A Special Case First

We start by considering the simpler case in which we are given oracle access to a function
B() such that Prr[B(r) = x · r] ≥ 7/8 and we want to find x.

If we denote by ei the vector that has a 1 in the i-th coordinate and 0s in other coordinate,
we see that xi = x · ei. Furthermore, for every r, we have xi = x · (r⊕ ei)⊕ x · r because of
the linearity of the · operator and of the fact that r ⊕ r is the all zero vector.

Consider now the process of picking a random r and computing B(r⊕ei)⊕B(r). Except
with probability at most 1/8, B(r ⊕ ei) = x · (r ⊕ ei) and, except with probability at most
1/8, B(r) = x · r. Therefore, with probability at least 3/4,

B(r ⊕ ei)⊕B(r) = x · (r ⊕ ei)⊕ x · r = xi

This suggests the following algorithm:

Algorithm A 7
8
:

for i := 1 to n do
pick k = O(log n) random elements r1, . . . , rk ∈ {0, 1}n

compute:
B(r1 ⊕ e1)⊕B(r1)
B(r2 ⊕ e2)⊕B(r2)

...
B(rk ⊕ en)⊕ g(rn)

assign to xi the value occurring in the majority of these computations
return x

To analyze the algorithm, note that, for a particular value of i, we expect to get the right
value of xi in a fraction 3/4 of the k trials, and the algorithm derives the correct value of

2

xi provided that more than half of the k trials are correct. Then, by a Chernoff bound,
the probability of estimating xi incorrectly is e−Ω(k). We can then choose k = O(log n) and
make sure that the error probability is at most, say, 1/100n, and hence we conclude that
the output of the algorithm is correcgt with probability at least 99/100.

We note that the running time of this program is O(n2k) = O(n2 log n) and that it
makes O(nk) = O(n log n) oracle accesses.

2.2 The General Case

Consider now the general case. We are given an oracle B() such that B(r) = x · r for
an 1/2 + ε fraction of the r. Our goal will be to use B() to simulate an oracle that has
agreement 7/8 with x · r, so that we can use the algorithm of the previous section to find
x. We perform this “reduction” by “guessing” the value of x · r at a few points.

We first choose t random points r1 . . . rt ∈ {0, 1}n where t = O(1/ε2). For the moment,
let us suppose that we have “magically” obtained the values x · r1, . . . , x · rk. Then define
B′(r) as the majority value of:

x · rj ⊕B(r ⊕ rj) j = 1, 2, . . . , t (1)

For each j, the above expression equals x · r with probability at least 1
2 + ε (over the choices

of rj) and by choosing t = O(1/ε2) we can ensure that

Prr,r1,...,rt

[
B′(r) = x · r

]
≥ 31

32
. (2)

from which it follows that

Prr1,...,rk

[
Prr

[
B′(r) = x · r

]
≥ 7

8

]
≥ 3

4
. (3)

Consider the following algorithm.

Algorithm GL-First-Attempt:
pick r1, . . . , rt ∈ {0, 1}k where t = O(1/ε2)
for all b1, . . . , bt ∈ {0, 1}

define B′
b1...bt

(r) as majority of: bj ⊕B(r ⊕ rj)
apply Algorithm A 7

8
to B′

b1...bt

add result to list

The idea behind this program is that we do not in fact know the values x · rj , but we
can “guess” them by considering all choices for the bits bj . If B(r) agrees with x · r for at
least a 1/2 + ε fraction of the rs, then there is a probability at least 3/4 that in one of the
iteration we invoke algorithm A 7

8
with a simulated oracle that has agreement 7/8 with x · r.

Therefore, the final list contains x with probability at least 3/4− 1/100 > 1/2.
The obvious problem with this algorithm is that its running time is exponential in

t = O(1/ε2) and the resulting list may also be exponentially larger than the O(1/ε2) bound
promised by the Lemma.

To overcome these problems, consider the following similar algorithm.

3

Algorithm GL:
pick r1, . . . , rl ∈ {0, 1}k where l = log O(1/ε2)
define rS :=

⊕
j∈S rj for each non-empty S ⊆ {1, . . . , l}

for all b1, . . . , bl ∈ {0, 1}
define bS :=

⊕
j∈S bj for each non-empty S ⊆ {1, . . . , l}

define B′
b1...bl

(r) as majority over non-empty S ⊆ {1, . . . , l} of bS ⊕B(r ⊕ rS)
run Algorithm A 7

8
with oracle B′

b1...bl

add result to list

Let us now see why this algorithm works. First we define, for any nonempty S ⊆
{1, . . . , l}, rS =

⊕
j∈S rj . Then, since r1, . . . , rl ∈ {0, 1}k are random, it follows that for any

S 6= T, rS and rT are independent and uniformly distributed. Now consider an x such that
x · r and B(r) agree on a 1

2 + ε fraction of the values of r. Then for the choice of {bj} where
bj = x · rj for all j, we have that

bS = x · rS

for every non-empty S. In such a case, for every S and every r, there is a probability at
least 1

2 + ε, over the choices of the rj that

bS ⊕B(r ⊕ rS) = x · r ,

and these events are pair-wise independent. Note the following simple lemma.

Lemma 4 Let R1, . . . , Rt be a set of pairwise independent 0− 1 random variables, each of
which is 1 with probability at least 1

2 + ε. Then Pr[
∑

i Ri ≥ t/2] ≥ 1− 1
4ε2t

.

Proof: Let R = R1 + · · ·+Rt. The variance of a 0/1 random variable is at most 1/4, and,
because of pairwise independence, Var[R] = Var[R1 + . . . + Rt] =

∑
i Var[Ri] ≤ t/4.

We then have

Pr[R ≤ t/2] ≤ Pr[|R−E[R]| ≥ εt] ≤ Var[R]
ε2t2

≤ 1
4ε2t

2

Lemma 4 allows us to upper-bound the probability that the majority operation used
to compute B′ gives the wrong answer. Combining this with our earlier observation that
the {rS} are pairwise independent, we see that choosing l = 2 log 1/ε + O(1) suffices to
ensure that B′

b1...bl
(r) and x · r have agreement at least 7/8 with probability at least 3/4.

Thus we can use Algorithm A 7
8

to obtain x with high probability. Choosing l as above

ensures that the list generated is of length at most 2l = O(1/ε2) and the running time is
then O(ε−4 · n2 log n) with O(ε−4 · n log n) oracle accesses, due to the O(1/ε2) iterations of
Algorithm A 7

8
, that makes O(n log n) oracle accesses, and to the fact that one evaluation

of B′() requires O(1/ε2) evaluations of B().

4

3 References

The results of this lecture are from [GL89]. Goldreich and Levin initially presented a
different proof. They credit the proof with pairwise independence to Rackoff. Algorithm
A 7

8
is due to Blum, Luby and Rubinfeld [BLR93]. The use of Algorithm GL-First-Attempt

as a motivating example might be new to these notes. (Or, actually, to the Fall 2001 notes
for this class.)

References

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences, 47(3):549–595,
1993. Preliminary version in Proc. of STOC’90. 5

[GL89] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In
Proceedings of the 21st ACM Symposium on Theory of Computing, pages 25–32,
1989. 5

5

