
U.C. Berkeley — CS278: Computational Complexity Handout N12 v0.91
Professor Luca Trevisan 10/11/2004

Notes for Lecture 12 v0.91

These notes are in a draft version. Please give me any comments you may have, because
this will help me revise them.

Last Revision 11/30/04

1 Pseudorandom Generators

Definition 1 (Indistinguishability - finite definition) Two random variables X and
Y taking value over {0, 1}n are (S, ε)-indistinguishable if for every circuit C of size at most
S we have

|Pr[C(X) = 1]−Pr[C(Y) = 1]| ≤ ε .

We say that a random variable X is (S, ε)-pseudorandom if it is (S, ε)-indistinguishable
from the uniform distribution.

Definition 2 (Pseudorandom Generator) A function G : {0, 1}∗ → {0, 1}∗ is a pseu-
dorandom generator of stretch `(n), where ` : N → N and `(n) ≥ n + 1, if

• G is computable in polynomial time, in the length of the input;

• G maps inputs of length n into outputs of length `(n);

• For every two polynomials p() and q() and for every sufficiently large n, the random
variable G(Un) is (p(n), 1/q(n))-pseudorandom, where Un denotes a random variable
uniformly distributed in {0, 1}n.

Remark 1 The definition of pseudorandom generators is typically given in the following
equivalent form. First, say that a function ν : N → R is negligible if for every polynomial
p and for every sufficiently large n we have ν(n) ≤ 1/p(n). Then G is said to be a pseudo-
random generator if it satisfies to the first two properties of the above definition and if, in
addition, for every family of polynomial size circuits {Cn} there is a negligible function ν()
such that

|Pr[C`(n)(U`(n)) = 1]−Pr[C`(n)(G(Un)) = 1]| ≤ ν(n) .

One can easily verify that this definition implies Definition 2 (note that `(n) must be upper
bounded by a polynomial). For the other direction, let G be a pseudorandom generator
according to Definition 2 and fix a family of polynomial circuits. Define

ν(n) := |Pr[C`(n)(U`(n)) = 1]−Pr[C`(n)(G(Un)) = 1]|

and note that for every polynomial q() it must be that ν(n) ≤ 1/q(`(n)) for every sufficiently
large n, and so it follows that ν() must be negligible.

1

2 One-way Functions and Hard-Core Bits

Definition 3 (One-Way Function – finite definition) A function f : {0, 1}n → {0, 1}n

is (S, ε)-one-way if for every circuit A of size a most S,

Prx∈{0,1}n [f(A(f(x))) = f(x)] ≤ ε .

For the next definition, we adopt the following convention: if f : {0, 1}∗ → {0, 1}∗ is a
function, then we denote by fn : {0, 1}n → {0, 1}∗ the restriction of f to inputs of length n.

Definition 4 (One-Way Function - asymptotic definition) A family f : {0, 1}∗ →
{0, 1}∗ is a one-way function if:

• f is computable in polynomial time (in the length of the input) and

• for every two polynomials p() and q() and for every sufficiently large n, fn is (p(n), 1/q(n))-
one-way.

In words, a one-way function is easy to compute but intractable to invert.

Theorem 1 If pseudorandom generators exist, then one-way functions exist.

Proof: See Exercises. 2

The converse is also true, but it has an extremely difficulty proof.

Theorem 2 ([HILL99]) If one-way functions exist, then pseudorandom generators exist.

In these notes we will prove the simpler, but still remarkable, result that if one-way
permutations exist then pseudorandom generators exist. A one-way permutation is a one-
way function f such that, for every n, fn : {0, 1}n → {0, 1}n is a bijection. In general, we
call a function f : {0, 1}∗ → {0, 1}∗ a permutation if, for every n, fn : {0, 1}n → {0, 1}n is a
bijection.

We begin by introducing the notion of a hard-core predicate of a one-way permutation.

Definition 5 (Hard-Core Predicate – finite definition) A function B : {0, 1}n →
{0, 1} is a (S, ε) hard-core predicate for a permutation f : {0, 1}n → {0, 1}n if for every
circuit A of size at most S we have

Prx∼{0,1}n [A(f(x)) = B(x)] ≤ 1
2

+ ε .

Definition 6 (Hard-Core Predicate – asymptotic definition) A function B : {0, 1}∗ →
{0, 1} is a hard-core predicate for a permutation f : {0, 1}∗ → {0, 1}∗ if

• B is computable in polynomial time;

• For every two polynomials p and q, and for every sufficiently large n, Bn is (p(n), 1/q(n))
hard-core for fn.

2

In words, B(x) is an efficiently computable property of x. Given f(x), however, it is
intractable to even guess with probability much better than 1/2 whether B(x) is zero or
one.

For standard conjectured one-way permutations, such as RSA and exponentiation, very
simple functions, such as the value of the last bit of the input, are hard-core predicates. The
following result shows that every one-way permutation can be modified to have a hard-core
predicate.

Theorem 3 (Goldreich-Levin [GL89]) Let f be a one-way permutation and define f ′

such that f ′2n(x, r) = fn(x), r. Define B2n(x, r) = x ·r, where x ·r =
∑

i xiri (mod 2). Then
f ′ is a one-way permutation and B is a hard-core predicate for f ′.1

In words, the theorem says that if f is a one-way permutation, and we pick at random
x ∈ {0, 1}n and a subset S ⊆ {1, . . . , n}, and we give to an adversary the value f(x) and set
S, it is intractable for the adversary to compute

⊕
i∈S xi, or even to guess such value with

probability much better than 1/2. We defer the proof of the Goldreich-Levin Theorem to a
later section.

3 One-way Permutations Imply Pseudorandom Generators

The main result of this section is the following.

Theorem 4 (Blum-Micali-Yao [BM84, Yao82]) Suppose that one-way permutations
exist, and let `(n) be a polynomial. Then there are pseudorandom generators of stretch
`(n).

We will prove the Theorem in the finite setting, which gives important information about
the security of concrete pseudorandom generators based on concrete finite permutations.
We begin with the case of stretch n + 1.

Lemma 5 Let f : {0, 1}n → {0, 1}n be a permutation and B : {0, 1}n → {0, 1} be a (S, ε)
hard-core predicate for f . Define

G(x) := f(x), B(x) .

Then G(Un) is (S −O(1), ε)-pseudorandom.

Proof: We prove that if A is a circuit of size S such that

|Prx∼{0,1}n,r∼{0,1}[A(f(x), r) = 1]−Prx∼{0,1}n [A(f(x), B(x)) = 1]| ≥ ε (1)

then we can construct a circuit C of size S + O(1) such that

Pr[C(f(x)) = B(x)] ≥ 1
2

+ ε

1An annoying technicality is that the new function is only defined for inputs of even length. One can get
around this by saying that when f ′ gets an input of odd length 2k +1 it discards the last input bit and then
it computes f ′

2k of the first 2k input bits, as defined above.

3

and this clearly implies that the Lemma is true.
We start by noting that Equation (1) can be rewritten as

Prx∼{0,1}n,r∼{0,1}[A
′(f(x), r) = 1]−Prx∼{0,1}n [A′(f(x), B(x)) = 1] ≥ ε (2)

where A′ is either A or the complement of A.
Equation (2) means that A′(f(x), b) is more likely to output 1 if b = B(x) than if

b = ¬B(x). This suggests the following algorithm.

Input: y

// the algorithm receives in input y = f(x) and tries to guess B(x) = B(f (−1)(y))
begin

pick random b ∈ {0, 1}
if A′(f(x), b) = 1 then return b
else return ¬b

end

We will prove that, over the choices of x and b, the algorithm, on input f(x) correctly
computes B(x) with probability 1/2+ε. Let us denote by Cb(y) the output of the algorithm
given the input y and the random choice b. That is, Cb(y) = (¬b)⊕A′(y, b).

Pr[Cb(f(x)) = B(x)] = Pr[b = B(x)] ·Pr[Cb(f(x)) = B(x)|b = B(x)]
+Pr[b 6= B(x)] ·Pr[Cb(f(x)) = B(x)|b 6= B(x)]

=
1
2
Pr[A′(f(x), B(x)) = 1] +

1
2
Pr[A′(f(x),¬B(x)) = 0]

=
1
2

+
1
2
Pr[A′(f(x), B(x)) = 1]− 1

2
Pr[A′(f(x),¬B(x)) = 1]

Let us now study the last expression. We can think of the probability of the event
that A′(f(x), r) = 1 as the average of the probabilities that A′(f(x), B(x)) = 1 and
A′(f(x),¬B(x)) = 1. Equation (2) tells us that there is a difference of ε between the
probability of the event A′(f(x), B(x)) = 1 and the event A′(f(x), r) = 1. Then, it must
follow that there is a difference of 2ε between the probability of A′(f(x), B(x)) = 1 and of
A′(f(x),¬B(x)) = 1, so that the last expression in the above derivation is at least 1/2 + ε.
More formally:

1
2
Pr[A′(f(x), B(x)) = 1]− 1

2
Pr[A′(f(x),¬B(x)) = 1]

= Pr[A′(f(x), B(x)) = 1]−
(

1
2
Pr[A′(f(x), B(x)) = 1] +

1
2
Pr[A′(f(x),¬B(x)) = 1]

)
= Pr[A′(f(x), B(x)) = 1]−Pr[A′(f(x), r) = 1]

Combining everything together, we have

Pr[Cb(f(x)) = B(x)] =
1
2

+ Pr[A′(f(x), B(x)) = 1]−Pr[A′(f(x), r) = 1] ≥ 1
2

+ ε

4

Finally, there exists a specific value b∗ ∈ B such that

Prx[Cb∗(f(x)) = B(x) ≥ 1
2

+ ε

and we define C to be Cb∗ . Note that the size of C is S + O(1). 2

Lemma 6 Let f : {0, 1}n → {0, 1}n be a permutation, B : {0, 1}n → {0, 1} be a (S, ε)
hard-core predicate for f and suppose that both B and f are computable by circuits of size
at most t. Define

G(x) := B(x), B(f(x)), · · · , B(f (k−1)(x)), f (k)(x) .

Then G(Un) is (S −O(tk), ε/k)-pseudorandom.

Proof: We again proceed by contradiction. We assume that there is a circuit A of size S
such that

|Pr[A(G(x)) = 1]−Pr[A(r) = 1]| > ε , (3)

where x is uniform in {0, 1}n and r is uniform in {0, 1}n+k, and we show there is a circuit
C of size ≤ S + O(tk) such that

Pr[C(f(x)) = B(x)] >
1
2

+
ε

k

As a first step, we note that there is a circuit A′ (which is either equal to A or to its
complement) such that Expression (3) can be written as

Pr[A′(G(x)) = 1]−Pr[A′(r) = 1]| > ε (4)

We now do a hybrid argument. We define k+1 distributions X0, . . . , Xl. The distribution
Xi is defined by computing g = G(x) for a random x ∈ {0, 1}n and picking r ∈ {0, 1}k at
random; then the first i bits of r are concatenated with the last k− i bits of g. We have by
definition that X0 is distributed like G(x) and Xk is uniform. (Indeed, since x is uniformly
random and f is a permutation, then f(x) is uniformly distributed. By induction, f (i)(x)
is uniform for every i.)

We can rewrite Expression (4) as

Pr[A′(X0) = 1]−Pr[A′(Xk) = 1] > ε

and we note that we can write

ε < Pr[A′(X0) = 1]−Pr[A′(Xk) = 1]

=
k−1∑
j=0

Pr[A′(Xj) = 1]−Pr[A′(Xj+1) = 1]

and so there exists one j for which

5

Pr[A′(Xj−1) = 1]−Pr[A′(Xj) = 1] >
ε

k

which means that A′ can distinguish

Xj−1 = b1, . . . , bj−1, B(f (j−1)(x)), · · · , B(f (k−1)(x)), f (k)(x)

from

Xj = b1, . . . , bj , B(f (j)(x)), · · · , B(f (k−1)(x)), f (k)(x)

(where bh are random bits)
Recall that, for every i, the distribution f (i)(x) is uniform in {0, 1}n. This means that

the two distributions above can be equivalently redefined if we substitute f (j)(x) with a
uniformly random element y. All this is giving us that C can distinguish

b1, . . . , bj−1, B(f (−1)(y)), B(y), · · · , B(f (k−j−1)(y)), f (k−j)(y)

from

b1, . . . , bj−1, bj , B(y), · · · , B(f (k−j−1)(y)), f (k−j)(y)

On input y we can compute f(y), · · · , f (k−j)(y) and also B(y), · · · , B(f (k−j−1)(y).
Consider now the following algorithm.

Input: y

// the algorithm receives in input y = f(z) and tries to guess B(z) = B(f (−1)(y))
begin

pick random b1, . . . , bj ∈ {0, 1}
if A′(b1, . . . , bj , B(y), · · · , B(f (k−j−1)(y)), fk−j(y)) = 1 then return bj

else return ¬bj

end

Denote by Cb1,...,bj
(y) the output of the algorithm given input y and random choices

b1, . . . , bj . Then, as in the proof of a previous lemma, it is possible to show that

Pr[Cb1,...,bj
(f(x)) = B(x)] =

1
2

+ Pr[A′(Xj−1) = 1]−Pr[A′(Xj) = 1] >
1
2

+
ε

k

Finally, we observe that there must exist a fixed choice of b∗1, . . . , b
∗
j such that

Pr[Cb∗1,...,b∗j
(f(x)) = B(x)] >

1
2

+
ε

k

and we define C to be equal to Cb∗1,...,b∗j
. 2

6

4 References

The notion of indistinguishability is due to Goldwasser and Micali [GM84], who also intro-
duced the hybrid argument. Blum and Micali [BM84] were the first to give a formal defini-
tion of pseudorandom generator, but their definition was not based on indistinguishability.
The indistinguishability-based definition is due to Yao [Yao82], who showed the equivalence
of his definition to the definition of Blum and Micali. Yao also treated in greater generality
the notion of hard-core predicate, that had been used in an ad hoc way by Goldwasser and
Micali and by Blum and Micali.

References

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudorandom bits. SIAM Journal on Computing, 13(4):850–864, 1984. Prelimi-
nary version in Proc. of FOCS’82. 3, 7

[GL89] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In
Proceedings of the 21st ACM Symposium on Theory of Computing, pages 25–32,
1989. 3

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984. Preliminary Version in Proc. of STOC’82.
7

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.
2

[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings of the
23th IEEE Symposium on Foundations of Computer Science, pages 80–91, 1982.
3, 7

7

Exercises

1. Let {Xn}n≥1 and {Yn}n≥1 be ensembles (sets) of random variables, where Xn and Yn

take values over {0, 1}n. Say that {Xn} and {Yn} are indistinguishable if for every
two polynomials p and q and for every large enough n we have that Xn and Yn are
(p(n), 1/q(n))-indistinguishable.

Prove that if {Xn} and {Yn} are computationally indistinguishable, and f is a length-
preserving (meaning that the length of the output is always equal to the length of the
input) polynomial time computable function, then {fn(Xn)} and {fn(Yn)} are also
computationally indistinguishable.

[Hint: start by proving that if fn() is computable by a circuit of size t, and Xn and Yn

are (S, ε)-indistinguishable, then fn(Xn) and fn(Yn) are (S − t, ε)-indistinguishable.]

2. Prove that there is an ensemble {Xn} that is computationally indistinguishable from
the ensamble of uniform distributions {Un}, even though only nlog n elements of {0, 1}n

have non-zero probability in Xn.

[Hint: use the probabilistic method and Chernoff bounds to argue that there exists
a random variable Xn that ranges over only nlog n elements of {0, 1}n and that is
(nΩ(log n), 1/nΩ(log n)) pseudorandom.]

3. Prove that if pseudorandom generators of stretch 2n exist, then one-way functions
exist.

[Hint: prove that the generator itself is a one-way function.]

4. Prove that if a permutation f has a hard-core predicate B, then f is a one-way
permutation.

5. Prove that if P = NP then there cannot be any pseudorandom generators, even of
stretch n + 1.

8

	Pseudorandom Generators
	One-way Functions and Hard-Core Bits
	One-way Permutations Imply Pseudorandom Generators
	References

