
U.C. Berkeley — CS278: Computational Complexity Handout N10
Professor Luca Trevisan 10/4/2002

Notes for Lecture 10

Counting Problems

1 Counting Classes

Definition 1 R is an NP-relation, if there is a polynomial time algorithm A such that
(x, y) ∈ R ⇔ A(x, y) = 1 and there is a polynomial p such that (x, y) ∈ R ⇒ |y| ≤ p(|x|).

#R is the problem that, given x, asks how many y satisfy (x, y) ∈ R.

Definition 2 #P is the class of all problems of the form #R, where R is an NP-relation.

Observe that an NP-relation R naturally defines an NP language LR, where LR = {x : x ∈
R(x, y)}, and every NP language can be defined in this way. Therefore problems in #P
can always be seen as the problem of counting the number of witnesses for a given instance
of an NP problem.

Unlike for decision problems there is no canonical way to define reductions for counting
classes. There are two common definitions.

Definition 3 We say there is a parsimonious reduction from #A to #B (written #A ≤par

#B) if there is a polynomial time transformation f such that for all x, |{y, (x, y) ∈ A}| =
|{z : (f(x), z) ∈ B}|.

Often this definition is a little too restrictive and we use the following definition instead.

Definition 4 #A ≤ #B if there is a polynomial time algorithm for #A given an oracle
that solves #B.

#CIRCUITSAT is the problem where given a circuit, we want to count the number of
inputs that make the circuit output 1.

Theorem 1 #CIRCUITSAT is #P-complete under parsimonious reductions.

Proof: Let #R be in #P and A and p be as in the definition. Given x we want to construct
a circuit C such that |{z : C(z)}| = |{y : |y| ≤ p(|x|), A(x, y) = 1}|. We then construct Ĉn

that on input x, y simulates A(x, y). From earlier arguments we know that this can be done
with a circuit with size about the square of the running time of A. Thus Ĉn will have size
polynomial in the running time of A and so polynomial in x. Then let C(y) = Ĉ(x, y). 2

Theorem 2 #3SAT is #P-complete.

1

Proof: We show that there is a parsimonious reduction from #CIRCUITSAT to #3-
SAT. That is, given a circuit C we construct a Boolean formula ϕ such that the number
of satisfying assignments for ϕ is equal to the number of inputs for which C outputs 1.
Suppose C has inputs x1, . . . , xn and gates 1, . . . ,m and ϕ has inputs x1, . . . , xn, g1, . . . , gm,
where the gi represent the output of gate i. Now each gate has two input variables and one
output variable. Thus a gate can be complete described by mimicking the output for each
of the 4 possible inputs. Thus each gate can be simulated using at most 4 clauses. In this
way we have reduced C to a formula ϕ with n + m variables and 4m clauses. So there is a
parsimonious reduction from #CIRCUITSAT to #3SAT. 2

Notice that if a counting problem #R is #P-complete under parsimonious reduc-
tions, then the associated language LR is NP-complete, because #3SAT ≤par #R implies
3SAT ≤ LR. On the other hand, with the less restrictive definition of reducibility, even
some counting problems whose decision version is in P are #P-complete. For example, the
problem of counting the number of satisfying assignments for a given 2CNF formula and
the problem of counting the number of perfect matchings in a given bipartite graphs are
both #P-complete.

2 Complexity of counting problems

We will prove the following theorem:

Theorem 3 For every counting problem #A in #P, there is a probabilistic algorithm C
that on input x, computes with high probability a value v such that

(1− ε)#A(x) ≤ v ≤ (1 + ε)#A(x)

in time polynomial in |x| and in 1
ε , using an oracle for NP.

The theorem says that #P can be approximate in BPPNP. We have a remark here
that approximating #3SAT is NP-hard. Therefore, to compute the value we need at least
the power of NP, and this theorem states that the power of NP and randomization is
sufficient.

Another remark concerns the following result.

Theorem 4 (Toda) For every k, Σk ⊆ P#P.

This implies that #3SAT is Σk-hard for every k, i.e., #3SAT lies outside PH, unless
the hierarchy collapses. Recall that BPP lies inside Σ2, and hence approximating #3SAT
can be done in Σ3. Therefore, approximating #3SAT cannot be equivalent to computing
#3SAT exactly, unless the polynomial hierarchy collapses.1

We first make some observations so that we can reduce the proof to an easier one.

• It is enough to prove the theorem for #3SAT.

If we have an approximation algorithm for #3SAT, we can extend it to any #A in
#P using the parsimonious reduction from #A to #3SAT.

1The above discussion was not very rigorous but it can be correctly formalized.

2

• It is enough to give a polynomial time O(1)-approximation for #3SAT.

Suppose we have an algorithm C and a constant c such that

1
c
#3SAT(ϕ) ≤ C(ϕ) ≤ c#3SAT(ϕ).

Given ϕ, we can construct ϕk = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕk where each ϕi is a copy of ϕ
constructed using fresh variables. If ϕ has t satisfying assignments, ϕk has tk satisfying
assignments. Then, giving ϕk to the algorithm we get

1
c
tk ≤ C(ϕk) ≤ ctk(

1
c

)1/k

t ≤ C(ϕk)1/k ≤ c1/kt.

If c is a constant and k = O(1
ε), c1/k = 1 + ε.

• For a formula ϕ that has O(1) satisfying assignments, #3SAT(ϕ) can be found in
PNP.

This can be done by iteratively asking the oracle the questions of the form: “Are there
k assignments satisfying this formula?” Notice that these are NP questions, because
the algorithm can guess these k assignments and check them.

3 An approximate comparison procedure

Suppose that we had available an approximate comparison procedure a-comp with the
following properties:

• If #3SAT(ϕ) ≥ 2k+1 then a− comp(ϕ, k) = YES with high probability;

• If #3SAT(ϕ) < 2k then a− comp(ϕ, k) = NO with high probability.

Given a-comp, we can construct an algorithm that 2-approximates #3SAT as described
in Figure 1.
We need to show that this algorithm approximates #3SAT within a factor of 2. If a-comp
answers NO from the first time, the algorithm outputs the right answer because it checks
for the answer explicitly. Now suppose a-comp says YES for all t = 1, 2, . . . , i − 1 and
says NO for t = i. Since a-comp(ϕ, i − 1) outputs YES, #3SAT(ϕ) ≥ 2i−1, and also since
a-comp(ϕ, 2i) outputs NO, #3SAT(ϕ) < 2i+1. The algorithm outputs a = 2i. Hence,

1
2
a ≤ #3SAT(ϕ) < 2 · a

and the algorithm outputs the correct answer with in a factor of 2.
Thus, to establish the theorem, it is enough to give a BPPNP implementation of the

a-comp.

3

Input: ϕ

compute:
a-comp(ϕ, 0)
a-comp(ϕ, 1)
a-comp(ϕ, 2)
...
a-comp(ϕ, n + 1)

if a-comp outputs NO from the first time then
// The value is either 0 or 1.
// The answer can be checked by one more query to the NP oracle.
Query to the oracle and output an exact value.

else
Suppose that it outputs YES for t = 1, . . . , i− 1 and NO for t = i
Output 2i

Figure 1: How to use a-comp to approximate #3SAT.

4 Constructing a-comp

The procedure and its analysis is similar to the Valiant-Vazirani reduction: for a given
formula ϕ we pick a hash function h from a pairwise independent family, and look at the
number of assignments x that satisfy h and such that h(x) = 0.

In the Valiant-Vazirani reduction, we proved that if S is a set of size approximately
equal to the size of the range of h(), then, with constant probability, exactly one element
of S is mapped by h() into 0. Now we use a different result, a simplified version of the
“Leftover Hash Lemma” proved by Impagliazzo, Levin, and Luby in 1989, that says that if
S is sufficiently larger than the range of h() then the number of elements of S mapped into
0 is concentrated around its expectation.

Lemma 5 Let H be a family of pairwise independent hash functions h : {0, 1}n → {0, 1}m.
Let S ⊂ 0, 1n, |S| ≥ 4·2m

ε2
. Then,

Prh∈H

[∣∣∣∣|{a ∈ S : h(a) = 0}| − |S|
2m

∣∣∣∣ ≥ ε
|S|
2m

]
≤ 1

4
.

From this, a-comp can be constructed as in Figure 2.
Notice that the test at the last step can be done with one access to an oracle to NP.

We will show that the algorithm is in BPPNP. Let S ⊆ {0, 1}n be the set of satisfying
assignments for ϕ. There are 2 cases.

• If |S| ≥ 2k+1, by Lemma 5 we have:

Prh∈H

[∣∣∣∣|{a ∈ S : h(a) = 0}| − |S|
2m

∣∣∣∣ ≤ 1
4
· |S|
2m

]
≤ 3

4
,

4

input: ϕ, k

if k ≤ 5 then check exactly whether #3SAT(ϕ) ≥ 2k.
if k ≥ 6,

pick h from a set of pairwise independent hash functions h : {0, 1}n → {0, 1}m,
where m = k − 5

answer YES iff there are more then 48 assignments a to ϕ such that
a satisfies ϕ and h(a) = 0.

Figure 2: The approximate algorithm for #3SAT.

(set ε = 1
4 , and |S| ≥ 4·2m

ε2
= 64 · 2m, because |S| ≥ 2k+1 = 2m+6)

Prh∈H

[
|{a ∈ S : h(a) = 0}| ≤ 3

4
· |S|
2m

]
≤ 1

4
,

Prh∈H [|{a ∈ S : h(a) = 0}| ≥ 48] ≥ 3
4
,

which is the success probability of the algorithm.

• If |S| < 2k:

Let S′ be a superset of S of size 2k. We have

Prh∈H [answer YES] = Prh∈H [|{a ∈ S : h(s) = 0}| ≥ 48]
≤ Prh∈H [

∣∣{a ∈ S′ : h(s) = 0
}∣∣ ≥ 48]

≤ Prh∈H

[∣∣∣∣∣{a ∈ S′ : h(s) = 0
}∣∣− |S′|2m

∣∣∣ ≥ |S′|
2·2m

]
≤ 1

4

(by Lemma 5 with ε = 1/2, |S′| = 32 · 2m.)

Therefore, the algorithm will give the correct answer with probability at least 3/4, which
can then be amplified to, say, 1− 1/4n (so that all n invocations of a-comp are likely to be
correct) by repeating the procedure O(log n) times and taking the majority answer.

5 The proof of Lemma 5

We finish the lecture by proving Lemma 5.

Proof: We will use Chebyshev’s Inequality to bound the failure probability. Let S =
{a1, . . . , ak}, and pick a random h ∈ H. We define random variables X1, . . . , Xk as

Xi =

{
1 if h(ai) = 0
0 otherwise.

5

Clearly, |{a ∈ S : h(a) = 0}| =
∑

i Xi.
We now calculate the expectations. For each i, Pr[Xi = 1] = 1

2m and E[Xi] = 1
2m .

Hence,

E

[∑
i

Xi

]
=
|S|
2m

.

Also we calculate the variance

Var[Xi] = E[X2
i]−E[Xi]2

≤ E[X2
i]

= E[Xi] =
1

2m
.

Because X1, . . . , Xk are pairwise independent,

Var

[∑
i

Xi

]
=

∑
i

Var[Xi] ≤
|S|
2m

.

Using Chebyshev’s Inequality, we get

Pr
[∣∣∣∣|{a ∈ S : h(a) = 0}| − |S|

2m

∣∣∣∣ ≥ ε
|S|
2m

]
= Pr

[∣∣∣∣∣∑
i

Xi −E[
∑

i

Xi]

∣∣∣∣∣ ≥ εE[
∑

i

Xi]

]

≤
Var[

∑
i Xi]

ε2E[
∑

i Xi]2
≤

|S|
2m

ε2
|S|2

(2m)2

=
2m

ε2 |S|
≤ 1

4
.

2

6 Approximate Sampling

So far we have considered the following question: for an NP-relation R, given an input x,
what is the size of the set Rx = {y : (x, y) ∈ R}? A related question is to be able to sample
from the uniform distribution over Rx.

Whenever the relation R is “downward self reducible” (a technical condition that we
won’t define formally), it is possible to prove that there is a probabilistic algorithm running
in time polynomial in |x| and 1/ε to approximate within 1 + ε the value |Rx| if and only if
there is a probabilistic algorithm running in time polynomial in |x| and 1/ε that samples a
distribution ε-close to the uniform distribution over Rx.

We show how the above result applies to 3SAT (the general result uses the same proof
idea). For a formula ϕ, a variable x and a bit b, let us define by ϕx←b the formula obtained
by substituting the value b in place of x.2

2Specifically, ϕx←1 is obtained by removing each occurrence of ¬x from the clauses where it occurs, and
removing all the clauses that contain an occurrence of x; the formula ϕx←0 is similarly obtained.

6

If ϕ is defined over variables x1, . . . , xn, it is easy to see that

#ϕ = #ϕx←0 + #ϕx←1

Also, if S is the uniform distribution over satisfying assignments for ϕ, we note that

Pr(x1,...,xn)←S [x1 = b] =
#ϕx←b

#ϕ

Suppose then that we have an efficient sampling algorithm that given ϕ and ε generates
a distribution ε-close to uniform over the satisfying assignments of ϕ.

Let us then ran the sampling algorithm with approximation parameter ε/2n and use it to
sample about Õ(n2/ε2) assignments. By computing the fraction of such assignments having
x1 = 0 and x1 = 1, we get approximate values p0, p1, such that |pb − Pr(x1,...,xn)←S [x1 =
b]| ≤ ε/n. Let b be such that pb ≥ 1/2, then #ϕx←b/pb is a good approximation, to within
a multiplicative factor (1 + 2ε/n) to #ϕ, and we can recurse to compute #ϕx←b to within
a (1 + 2ε/n)n−1 factor.

Conversely, suppose we have an approximate counting procedure. Then we can approx-
imately compute pb = #ϕx←b

#ϕ , generate a value b for x1 with probability approximately pb,
and then recurse to generate a random assignment for #ϕx←b.

The same equivalence holds, clearly, for 2SAT and, among other problems, for the
problem of counting the number of perfect matchings in a bipartite graph. It is known
that it is NP-hard to perform approximate counting for 2SAT and this result, with the
above reduction, implies that approximate sampling is also hard for 2SAT. The problem
of approximately sampling a perfect matching has a probabilistic polynomial solution, and
the reduction implies that approximately counting the number of perfect matchings in a
graph can also be done in probabilistic polynomial time.

The reduction and the results from last section also imply that 3SAT (and any other
NP relation) has an approximate sampling algorithm that runs in probabilistic polynomial
time with an NP oracle. With a careful use of the techniques from last week it is indeed
possible to get an exact sampling algorithm for 3SAT (and any other NP relation) running
in probabilistic polynomial time with an NP oracle. This is essentially best possible, be-
cause the approximate sampling requires randomness by its very definition, and generating
satisfying assignments for a 3SAT formula requires at least an NP oracle.

7 References

The class #P was defined by Valiant [Val79]. An algorithm for approximate counting within
the polynomial hierarchy was developed by Stockmeyer [Sto83]. The algorithm presented
in these notes is taken from lecture notes by Oded Goldreich. The left-over hash lemma
is from [HILL99]. The problem of approximate sampling and its relation to approximate
counting is studied in [JVV86].

7

References

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.
7

[JVV86] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation
of combinatorial structures from a uniform distribution. Theoretical Computer
Science, 43:169–188, 1986. 7

[Sto83] L.J. Stockmeyer. The complexity of approximate counting. In Proceedings of the
15th ACM Symposium on Theory of Computing, pages 118–126, 1983. 7

[Val79] L.G. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8:189–201, 1979. 7

8

	Counting Classes
	Complexity of counting problems
	An approximate comparison procedure
	Constructing a-comp
	The proof of Lemma 5
	Approximate Sampling
	References

