
U.C. Berkeley — CS278: Computational Complexity Handout N7
Professor Luca Trevisan 9/20/2002

Notes for Lecture 7

In this lecture we introduce the polynomial hierarchy and prove the Karp-Lipton-Sipser
theorem.

1 Alternating Quantifiers

One way to look at the difference between NP and coNP is that a decision problem in
NP is asking a of “does there exist” question, where the existence of the answer can by
definition be efficiently proved. On the other hand, coNP asks “is it true for all” questions,
which do not seem to have simple, efficient proofs.

Formally, a decision problem A is in NP if and only if there is a polynomial time
procedure V (·, ·) and a polynomial time bound p() such that

x ∈ A if and only if ∃y.|y| ≤ p(|x|) ∧ V (x, y) = 1

and a problem A is in coNP if and only if there is a polynomial time procedure V (·, ·)
and a polynomial bound p() such that

x ∈ A if and only if ∀y : |y| ≤ p(|x|), V (x, y) = 1

Now suppose you had a decision problem A defined in the following form:

x ∈ A⇔ ∃ y1 s.t. |y1| ≤ p(|x|) ∀ y2 s.t. |y2| ≤ p(|x|) V (x, y1, y2)

(where p() is a polynomial time bound and V (·, ·, ·) is a polynomial time procedure.)
In other words, an algorithm solving problem A should return yes on an input x if an

only if there exists some string y1 such that for all strings y2 (both of polynomial length),
the predicate V (x, y1, y2) holds. An example of such a problem is this: given a Boolean
formula φ over variables x1, . . . , xn, is there a formula φ′ which is equivalent to φ and is
of size at most k? In this case, y1 is the formula φ′, y2 is an arbitrary assignment to the
variables x1, . . . , xn, and V (x, y1, y2) is the predicate which is true if and only if x[y2] and
y1[y2] are both true or both false, meaning that under the variable assignment y2, φ and φ′

agree. Notice that φ′ is equivalent to φ if and only if it agrees with φ under all assignments
of Boolean values to the variables.

As we will see, the problem A is a member of the class Σ2 in the second level of the
polynomial hierarchy.

2 The hierarchy

The polynomial hierarchy starts with familiar classes on level one: Σ1 = NP and Π1 =
coNP. For all i ≥ 1, it includes two classes, Σi and Πi, which are defined as follows:

A ∈ Σi ⇔ ∃y1. ∀y2.Qyi. VA(x, y1, . . . , yi)

1

and
B ∈ Πi ⇔ ∀y1. ∃y2.Q

′yi. VB(x, y1, . . . , yi)

where the predicates VA and VB depend on the problems A and B, and Q and Q′ represent
the appropriate quantifiers, which depend on whether i is even or odd (for example, if
i = 10 then the quantifier Q for Σ10 is ∀, and the quantifier Q′ for Π10 is ∃). For clarity,
we have also omitted the conditions that each string yi must be of polynomial length, but
such conditions must be added for a completely formal definition of Σi and Πi.

One thing that is easy to see is that Πk = coΣk. Also, note that, for all i ≤ k − 1,
Πi ⊆ Σk and Σi ⊆ Σk. These subset relations hold for Πk as well. This can be seen by
noticing that the predicates V do not need to “pay attention to” all of their arguments,
and so can represent classes lower on the hierarchy which have a smaller number of them.

3 An Alternate Characterization

The polynomial hierarchy can also be characterized in terms of “oracle machines.” The idea
here is that, instead of a standard Turing machine, we consider one which is augmented
with an oracle of a certain power which can be consulted as many times as desired, and
using only one computational step each time. Syntactically, this can be written as follows.

Let A be some decision problem and M be a class of Turing machines. Then MA is
defined to be the class of machines obtained from M by allowing instances of A to be solved
in one step. Similarly, if M is a class of Turing machines and C is a complexity class, then
MC =

⋃
A∈C

MA. If L is a complete problem for C, and the machines in M are powerful
enough to compute polynomial-time computations, then MC = ML.

Theorem 1 Σ2 = NP3SAT .

Proof: Let A ∈ Σ2, then for some polynomial p() and polynomial-time computable V ()
we have

x ∈ A if and only if ∃y1 s.t. |y1| ≤ p(|x|).∀y2 s.t. |y2| ≤ p(|x|).V (x, y1, y2) = 1

Then we define a non-deterministic machine with an NP-oracle as follows: on input x,
the machine guesses a string y1 of length at most p(|x|), and then asks the oracle whether
∃y2.|y2| ≤ p(|x|) ∧ V (x, y1, y2) = 0. The above question is an existential question about a
polynomial-time computation, so, by Cook’s theorem, it is possible to construct in polyno-
mial time a 3SAT instance that is satisfiable if and only if the answer to the above question
is YES. The machine accepts if and only if the answer from the oracle is NO. It is immediate
that the machine has an accepting computation if and only if

∃y1.|y1| ≤ p(|x|).(¬∃y2.|y2| ≤ p(|x|) ∧ V (x, y1, y2) = 0)

that is, the machine accepts if and only if x ∈ A.
Notice that, in the above computation, only one oracle query is made, even though the

definition of NP3SAT allows us to make an arbitrary number of oracle queries.
Let now A ∈ NP3SAT , and let M be the oracle machine that solves A. We first show

that there is a machine M ′ that also solves A, only makes one oracle query, and accepts

2

if and only if the answer to the oracle query is NO. On input x, M ′ guesses an accepting
computation of M(x), that is, M ′ guesses all the non-deterministic choices of M(x), all the
oracle questions, and all the answers. Then, for each question that was answered with a
YES, M ′ guesses a satisfying assignment to verify that the guess was correct. Finally, M ′

is left with a certain set of oracle questions, say, the formulae φ1, . . . , φk, for which it has
guessed that the correct oracle answer is NO. Then M ′ asks its oracle whether (a formula
equivalent to) φ1 ∨ · · · ∨ φk is satisfiable, and it accepts if and only if the answer is NO.

Consider the computation of M ′(x) when x ∈ A: there is a valid accepting computation
of M(x), and M ′(x) can guess that computation along with the valid oracle answers; it can
also guess valid assignments for all the queries for which the answer is YES; finally, it is left
with unsatisfiable formulae φ1, . . . , φk, the answer to the single oracle query of M ′ is NO,
and M ′ accepts.

Conversely, if M ′(x) has an accepting computation, then there must be a valid accepting
computation of M(x), and so x ∈ A. 2

In fact, a more general result is known, whose proof works along similar lines.

Theorem 2 For every i ≥ 2, Σi = NPΣi−1.

4 Additional Properties

Here are some more facts about the polynomial hierarchy, which we will not prove:

1. Πi and Σi have complete problems for all i.

2. A Σi-complete problem is not in Πj , j ≤ i − 1, unless Πj = Σi, and it is not in Σj

unless Σj = Σi.

3. Suppose that Σi = Πi for some i. Then Σj = Πj = Σi = Πi for all j ≥ i.

4. Suppose that Σi = Σi+1 for some i. Then Σj = Πj = Σi for all j ≥ i.

5. Suppose that Πi = Πi+1 for some i. then Σj = Πj = Πi for all j ≥ i.

We will just prove the following special case of part (3).

Theorem 3 Suppose NP = coNP. Then, for every i ≥ 2, Σi = NP.

Proof: Let us first prove that, under the assumption of the theorem, Σ2 = NP. Let A ∈ Σ2

and let M be the non-deterministic oracle machine that decides A using oracle access to
3SAT. Let also M ′ be the non-deterministic polynomial time Turing machine that decides
the complement of the 3SAT problem. We now describe a non-deterministic polynomial
time Turing machine M ′′ to decide A: on input x, M ′′ guesses an accepting computation
of M(x), along with oracle queries and answers; for each oracle question φ for which a YES
answer has been guessed, M ′′ guesses a satisfying assignment; for each oracle question ψ

for which a NO answer has been guessed, M ′′ guesses an accepting computation of M ′(ψ).
It is easy to verify that M ′′(x) has an accepting computation if and only if M3SAT (x) has
an accepting computation.

3

We can prove by induction on i that Σi = NP. We have covered the base case. Let us

now suppose that Σi−1 = NP; then Σi = NPΣi−1 = NPNP = Σ2 = NP. 2

While it seems like an artificial construction right now, in future lectures we will see
that the polynomial hierarchy helps us to understand other complexity classes.

5 The Karp-Lipton-Sipser Theorem

Theorem 4 (Karp-Lipton-Sipser) If NP ⊆ SIZE(nO(1)) then PH = Σ2. In other

words, the polynomial hierarchy would collapse to its second level.

Before proving the above theorem, we first show a result that contains some of the ideas
in the proof of the Karp-Lipton-Sipser theorem.

Lemma 5 If NP ⊆ SIZE(nO(1)) then there is a family of polynomial-size circuits that on

input a 3CNF formula φ outputs a satisfying assignment for φ if one such assignment exists

and a sequence of zeroes otherwise.

Proof: We define the circuits C1
n, . . . , C

n
n as follows:

• C1
n, on input a formula φ over n variables outputs 1 if and only if there is a satisfying

assignment for φ where x1 = 1,

• · · ·

• Ci
n, on input a formula φ over n variables and bits b1, . . . , bi−1, outputs 1 if and only

if there is a satisfying assignment for φ where x1 = b1, . . . , xi−1 = bi−1, xi = 1

• · · ·

• Cn
n , on input a formula φ over n variables and bits b1, . . . , bn−1, outputs 1 if and only

if φ is satisfied by the assignment x1 = b1, . . . , xn−1 = bn−1, xn = 1.

Also, each circuit realizes an NP computation, and so it can be built of polynomial size.
Consider now the sequence b1 = C1

n(φ), b2 = C2
n(b1, φ), . . . , bnC

n
n (b1, . . . , bn−1, φ). The

reader should be able to convince himself that this is a satisfying assignment for φ if φ is
satisfiable, and a sequence of zeroes otherwise. 2

We now prove the Karp-Lipton-Sipser theorem.

Proof: [Of Theorem 4] We will show that if NP ⊆ SIZE(nO(1)) then Π2 ⊆ Σ2. By a
result in a previous lecture, this implies that PH = Σ2.

Let L ∈ Π2, then there is a polynomial p() and a polynomial-time computable V () such
that

x ∈ L iff ∀y1.|y1| ≤ p(|x|)∃y2.|y2| ≤ p(|x|).V (x, y1, y2) = 1

By adapting the proof of Lemma 5 (see Figure 1), or by using the statement of the
Lemma and Cook’s theorem, we can show that, for every n, there is a circuit Cn of size
polynomial in n such that for every x and every y1, |y1| ≤ p(|x|),

4

x1 1y
there is y
starting with
1

2

x1 1y
there is y2

y
2

x1 1y 1b x1 1y 2b1b

1b 2b

. . .

. . .

there is y
starting with

2

b 1

there is y
starting with
b b 1

2

1 1 2

3b

0 or 1

Figure 1: How to use decision problem solvers to find a witness to a search problem.

∃y2.|y2| ≤ p(|x|) ∧ V (x, y1, y2) = 1 iff V (x, y1, Cn(x, y1)) = 1

Let q(n) be a polynomial upper bound to the size of Cn.
So now we have that for inputs x of length n,

x ∈ L iff ∃Cn.|Cn| ≤ q(n).∀y1.|y1| ≤ p(n).V (x, y1, Cn(x, y1)) = 1

which shows that L is in Σ2. 2

6 References

The polynomial time hierarchy was defined by Stockmeyer [Sto76]. Wrathall [Wra76] shows
that every class in the polynomial hierarchy has complete problems.

The Karp-Lipton-Sipser theorem appears in [KL80].

References

[KL80] R.M. Karp and R.J. Lipton. Some connections between nonuniform and uniform
complexity classes. In Proceedings of the 12th ACM Symposium on Theory of

Computing, pages 302–309, 1980. 5

[Sto76] L.J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3:1–22, 1976. 5

[Wra76] C. Wrathall. Complete sets for the polynomial hierarchy. Theoretical Computer

Science, 3:23–34, 1976. 5

5

Exercises

1. In the MAX SAT problem we are given a formula φ in conjunctive normal form and
we want to find the assignment of values to the variables that maximizes the number
of satisfied clauses. (For example, if φ is satisfiable, the optimal solution satisfies all
the clauses and the MAX SAT problem reduces to finding a satisfying assignment.)
Consider the following decision problem: given a formula φ in conjunctive normal
form and an integer k, determine if k is the number of clauses of φ satisfied by an
optimal assignment.

• Prove that this problem is in NP if and only if NP = coNP.
[Hint: prove that it is both NP-hard and coNP-hard.]

• Prove that this problem is in Σ2.

2. Define EXP = DTIME(2nO(1)
). Prove that if EXP ⊆ SIZE(nO(1)) then EXP = Σ2.

6

