Midterm

This is due in class on November 8.

- 1. A directed graph G = (V, E) is strongly connected if for any two vertices $u, v \in V$ there is a directed path in G from u to v. Let strong-CONN be the problem of deciding whether a given graph is strongly connected.
 - (a) Show that strong-CONN is in **NL**.
 - (b) Prove the **NL**-completeness of strong-CONN by giving a log-space reduction from ST-CONN to strong-CONN.
- 2. Suppose that there is a deterministic polynomial-time algorithm A that on input (the description of) a circuit C produces a number A(C) such that

$$\mathbf{Pr}_{x}[C(x) = 1] - \frac{2}{5} \le A(C) \le \mathbf{Pr}_{x}[C(x) = 1] + \frac{2}{5}$$

- (a) Prove that it follows $\mathbf{P} = \mathbf{B}\mathbf{P}\mathbf{P}$.
- (b) Prove that there exists a deterministic algorithm A' that, on input a circuit C and a parameter ϵ , runs in time polynomial in the size of C and in $1/\epsilon$ and produces a value $A'(C, \epsilon)$ such that

$$\mathbf{Pr}_x[C(x)=1] - \epsilon \le A'(C,\epsilon) \le \mathbf{Pr}_x[C(x)=1] + \epsilon .$$

(c) Prove that there exists a deterministic algorithm A'' that, on input a circuit C computing a function $f : \{0, 1\}^n \to \{1, \ldots, k\}$ and a parameter ϵ , runs in time polynomial in the size of C, in $1/\epsilon$ and in k, and produces a value $A''(C, \epsilon)$ such that

$$\mathbf{E}_x[f(x)] - \epsilon \le A''(C, \epsilon) \le \mathbf{E}_x[f(x)] + \epsilon$$

[For this question, you can think of C as being a circuit with $\log k$ outputs, and the outputs of C(x) are the binary representation of f(x).]

3. Prove that, for every constant $t, \Sigma_2 \not\subseteq \mathbf{SIZE}(n^t)$.

[Hint: first prove $\Sigma_4 \not\subseteq \mathbf{SIZE}(n^t)$, which should be easy. Then argue about what happens depending on whether or not $SAT \in \mathbf{SIZE}(n^t)$.]

4. Let f be a one-way permutation and g be a polynomial time computable permutation. Show that $g(f(\cdot))$ and $f(g(\cdot))$ are one-way permutations.

[Ideally, do the proof in the finite setting: show that if f is (S, ϵ) -one way and g can be computed by a circuit of size t, then $f(g(\cdot))$ and $g(f(\cdot))$ are $(S - t, \epsilon)$ -one way. Then derive the asymptotic result from the finite one. Be as detailed as you can in the analysis.]