
U.C. Berkeley — CS278: Computational Complexity Handout MS
Professor Luca Trevisan November 16, 2004

Midterm Solutions

1. A directed graph G = (V,E) is strongly connected if for any two vertices u, v ∈ V there
is a directed path in G from u to v. Let strong-CONN be the problem of deciding
whether a given graph is strongly connected.

(a) Show that strong-CONN is in NL.

(b) Prove the NL-completeness of strong-CONN by giving a log-space reduction
from ST-CONN to strong-CONN.

Solutions

The NL algorithm just goes through all pairs of vertices u, v and guesses a path from
u to v, rejecting if a path is not found in less than |V | steps. If the graph is strongly
connected, there is at least an accepting computations that guesses the paths right
correctly each time, and if there is an accepting computation, it must be the case that
the graph is strongly connected.

In the reduction, given G = (V,E), s, t, create G′ = (V,E′) where E′ has all the edges
of E and also all edges (v, s) and (t, v). If there is a path from s to t, then from every
vertex u we can go to every vertex v by using the edge (u, s), the path from s to t
and the edge (t, v), so G′ is strongly connected. But if G′ is strongly connected, there
is a simple path in G′ from s to t, and such simple path will not use any of the new
edges, so there was already a path from s to t in G.

1

2. Suppose that there is a deterministic polynomial-time algorithm A that on input (the
description of) a circuit C produces a number A(C) such that

Prx[C(x) = 1]− 2
5
≤ A(C) ≤ Prx[C(x) = 1] +

2
5

.

(a) Prove that it follows P = BPP.

(b) Prove that there exists a deterministic algorithm A′ that, on input a circuit C
and a parameter ε, runs in time polynomial in the size of C and in 1/ε and
produces a value A′(C, ε) such that

Prx[C(x) = 1]− ε ≤ A′(C, ε) ≤ Prx[C(x) = 1] + ε .

(c) Prove that there exists a deterministic algorithm A′′ that, on input a circuit C
computing a function f : {0, 1}n → {1, . . . , k} and a parameter ε, runs in time
polynomial in the size of C, in 1/ε and in k, and produces a value A′′(C, ε) such
that

Ex[f(x)]− ε ≤ A′′(C, ε) ≤ Ex[f(x)] + ε .

[For this question, you can think of C as being a circuit with log k outputs, and
the outputs of C(x) are the binary representation of f(x).]

Solutions

Part (2a) was easy: let L be a BPP language and AL the probabilistic polynomial time
algorithm that decides L, we may assume that the error probability of L is ≤ 1/10.
Here is a deterministic polynomial time algorithm for L: on input x, construct the
circuit C such that C(r) = 1 if and only if A(x, r) accepts. Then accept if and only
if A(C) > 1/2.

Several people said that, once we have P = BPP, part (2b) can be solved by just
giving a probabilistic algorithm that outputs the right answer with high probability.
This is not quite right, because P = BPP is a statement that concerns only languages,
not function computations, and if you try to prove formally that P = BPP implies a
solution to part (2b) you will run into trouble. In fact, it is a major open question to
show that P = BPP implies part (2b). However, it is known that if P = BPP for
promise problems then part (2b) follows, and the argument above for part (2a) also
extends to promise problems. Instead of formulating the solution in terms of promise
problems, it seems simpler to just give it directly.

We solve part (2b) by giving a deterministic algorithm ApxComp that, on input a
circuit C, an accuracy parameter ε > 0 and a threshold parameter 0 ≤ p ≤ 1, runs in
time polynomial in the size of C and in 1/ε and:

(a) If Prx[C(x) = 1] ≥ p + ε/2, then ApxComp(C, p, ε) accepts;

(b) If Prx[C(x) = 1] ≤ p− ε/2, then ApxComp(C, p, ε) rejects;

2

We run ApxComp(C, i · ε/2, ε) for i = 0, 1, . . . , 2/ε, and we find the smallest i such
that ApxComp(C, (i − 1) · ε/2, ε) accepts but ApxComp(C, i · ε/2, ε) rejects. Then
Pr[C(x) = 1] > (i − 1) · ε/2 − ε/2 and Pr[C(x) = 1] < iε/2 + ε/2, so we can safely
output iε/2 as our solution.

In order to devise the procedure ApxComp, it is enough to show how, given C, ε and
p, to construct a new circuit C ′ in time polynomial in the size of C and in 1/ε such
that:

(a) If Prx[C(x) = 1] ≥ p + ε/2, then Prz[C ′(z) = 1] ≥ 9/10;

(b) If Prx[C(x) = 1] ≤ p− ε/2, then Prz[C ′(z) = 1] ≤ 1/10.

Then we just compute A(C ′) and accept if and only if A(C ′) > 1/2.

The circuit C ′ has t = O(1/ε2) inputs x1, . . . , xt, where each xi is an n-bit string (here
n is the input length of C). The circuits C ′ computes C(x1), . . . , C(xt) and accepts
iff at least pt of such computations output 1. One can use Chebyshev inequality to
prove correctness.

Regarding part (2c), there are various ways of reducing the problem to the problem
solved in part (2b). For example, one can compute the probability that each of the
log k wires carries a one (up to an additive error ε/ log k), and then use such estimates
to compute an estimate of the average up to an additive error ε.

Otherwise, given a circuit C with n-bit input and log k bit output, one can define the
circuit C ′ with n + log k bit input and one-bit output such that C ′(x, i) = 1 if and
only if C(x) ≥ i. Then, it should be easy to see that Prx,i[C ′(x, i) = 1] = 1

kEx[C(x)].

3

3. Prove that, for every constant t, Σ2 6⊆ SIZE(nt).

[Hint: first prove Σ4 6⊆ SIZE(nt), which should be easy. Then argue about what
happens depending on whether or not SAT ∈ SIZE(nt).]

Solutions

Let us fix an arbitrary t, and see that Σ4 6⊆ SIZE(nt).

As a first step, let us see that there is a polynomial p(n) such that SIZE(p(n)) 6⊆
SIZE(nt). This can be proved in many different ways, providing different bounds on
p(n). Here are three possible arguments:

(a) We know that every function f : {0, 1}k → {0, 1} can be computed by a circuit
of size O(2k), and that there are functions f : {0, 1}k → {0, 1} that cannot be
computed by circuit of size 2k/4k. Let k(n) be such that 2k(n)/4k(n) > nt, for
example k(n) = log2(5nt log2 nt) will do for sufficiently large n. Then for every
sufficiently large n there is a function fk(n) : {0, 1}k(n) → {0, 1} that cannot
be computed by circuits of size nt but that can be computed by circuits of size
O(2k(n)) = O(nt log nt). Define the language L such that x ∈ L if and only if
fk(n) applied to the first k(n) bits of x equals 1, where n is the length of x. Then
L ∈ SIZE(O(nt log nt)) but L 6∈ SIZE(nt).

(b) We know that there are at most 22nt log nt+5nt
circuits of size nt. Suppose that

we are able to define a family of functions such that each function in the family
can be computed by a circuit of size ≤ p(n) and such that the family contains
more than 22nt log nt+5nt

distinct functions. Then the family contains a function
computable by a circuit of size p(n) but not computable by a circuit of size ≤ nt.
The above proof can be seen as an application of this method where the family
is the family of all functions that depend on only the first 5tnt log n bits of the
input. Another approach would be to fix a set S of 2nt log nt + 5nt + 1 elements
of {0, 1}n and then consider all the functions that are zero outside of S. There
are 2|S| such function, each computable by a circuit of size O(|S| · n).

(c) Suppose that SIZE(nt + 2n + 1) = SIZE(nt). We claim that this implies that
every function f : {0, 1}n → B can be computed by a circuit of size nt, which we
know to be false (for large enough n). We prove the claim by induction on the
number of inputs x such that f(x) = 1.

i. If f(x) = 0 for every x, then f can be computed by a circuit of constant
size, and, for a stronger reason, by a circuit of size nt.

ii. Suppose that we have proved that, for every g : {0, 1}n → {0, 1} that outputs
1 on ≤ K inputs, g ∈ SIZE(nt). Let f : {0, 1}n → {0, 1} be a funtion that
outputs 1 on K + 1 inputs, and let a be one such input. Define the function
g such that g(x) = f(x) for x 6= a, and g(a) = 0. Then g outputs 1 on K
inputs, the induction hypothesis can be applied, and g can be computed by
a circuit of size ≤ nt. But we can write f(x) = g(x) ∨ (x = a), where the

4

expression (x = a) can be realized by a circuit of size at most 2n. Then
f ∈ SIZE(nt +2n+1), and, by the assumption, we also have f ∈ SIZE(nt).

Let us use the last solution. So we know that is a circuit C with n inputs of size
nt + n + 1 that computes a function that cannot be computed by circuits of size nt.
We define a language L in Σ4 that, for every input length n, agrees with the output of
the lexicographically first circuit like that. Let Cs be the set of circuits of size s, and
let <L denote the lexicographic ordering, then we can define L formally as follows.
For every x ∈ {0, 1}n, we have

x ∈ L if and only if ∃C ∈ Cnt+n+1. (∀C ′ ∈ Cnt .∃y ∈ {0, 1}n.C(y) 6= C ′(y))
∧ (∀C ′′ ∈ Cnt+n+1 : C ′′ <L C ′

∃C ′′′ ∈ Cnt .∀z.C ′′(z) = C ′′′(z))
∧ C(x) = 1

Which is logically equivalent to the Σ4 formulation

x ∈ L if and only if ∃C ∈ Cnt+n+1.
∀C ′ ∈ Cnt , C ′′ ∈ Cnt+n+1.
∃y ∈ {0, 1}n, C ′′′ ∈ Cnt .
∀z.
C(y) 6= C ′(y) ∧ ((C ′′ <L C)⇒ (C ′′(z) = C ′′′(z))) ∧ C(x) = 1

And so we have Σ4 6⊆ SIZE(nt). Now, if NP ⊆ SIZE(nt), then, by Karp-Lipton,
we have Σ2 = Σ4 6⊆ SIZE(nt); if NP 6⊆ SIZE(nt), then, for a stronger reason,
Σ2 6⊆ SIZE(nt).

5

4. Let f be a one-way permutation and g be a polynomial time computable permutation.
Show that g(f(·)) and f(g(·)) are one-way permutations.

[Ideally, do the proof in the finite setting: show that if f is (S, ε)-one way and g can
be computed by a circuit of size t, then f(g(·)) and g(f(·)) are (S − t, ε)-one way.
Then derive the asymptotic result from the finite one. Be as detailed as you can in
the analysis.]

Solutions

Let g be computable by a circuit of size ≤ t, and suppose that f(g()) is not (S − t, ε)
one way. Then there is a function A computable by a circuit of size ≤ S− t such that

Pr[A(f(g(x)) = x] ≥ ε

which also implies that
Pr[g(A(f(g(x)) = g(x)] ≥ ε

Let us do the change of variable y ← g(x), notice that the uniform distribution over
x corresponds to the uniform distribution over y, call B() := g(A()), and we have

Pr[B(f(y)) = y] ≥ ε

where B is computable by a circuit of size ≤ S. That is, if f(g()) is not (S − t, ε) one
way, then f is not (S, ε) one way.

Suppose now that g(f()) is not (S − t, ε) one way, so that there is A computable in
size S − t such that

Pr[A(g(f(x))) = x] ≥ ε .

Define B() := A(g()), and note that B can be computed in size ≤ S and

Pr[B(f(x)) = x] ≥ ε ,

proving that f is not (S, ε) one way. That is, if f(g()) is not (S − t, ε) one way, then
f is not (S, ε) one way.

Asymptotically, let t(n) be a polynomial such that g is computable in time t(n).

Suppose that f(g()) is not one-way, then there are polynomials p, q such that, for
infinitely many n, f(g()) is not (p(n), 1/q(n))-one way on inputs of length n, and so
f is not (p(n) + t(n), 1/q(n)) one way on inputs of length n. This contradicts the
assumption that f is one-way.

Suppose that g(f()) is not one-way, then there are polynomials p, q such that, for
infinitely many n, g(f()) is not (p(n), 1/q(n))-one way on inputs of length n, and so
f is not (p(n) + t(n), 1/q(n)) one way on inputs of length n. This contradicts the
assumption that f is one-way.

6

