
U.C. Berkeley — CS276: Cryptography Handout SP3
Luca Trevisan March 23, 2009

Solutions to Problem Set 3

1. Let G : {0, 1}n → {0, 1}2n be a (t, ε)-secure pseudorandom generator com-
putable in time r.

Show that G is also a (t− r −O(n), ε+ 2−n)-secure one way function.

Solution. Suppose that A is an algorithm of complexity t − r − O(n) such
that

P
x
[A(G(x)) = x′ : G(x) = G(x′)] > ε+ 2−n (1)

Consider the algorithm A′ that, on input y, computes A(y) and then outputs 1
if and only if G(A(y)) = y. Then, from (1) we have

P
x∈{0,1}n

[A′(G(x)) = 1] > ε+ 2−n

Now note that we can have A′(y) = 1 only if y is a possible output of G, and G
has at most 2n possible outputs so

P
z∈{0,1}2n

[A′(z) = 1] ≤ P
z∈{0,1}2n

[z is a possible output of G] ≤ 2n

22n
= 2−n

and so ∣∣∣∣ P
x∈{0,1}n

[A′(G(x)) = 1]− P
z∈{0,1}2n

[A′(z) = 1]

∣∣∣∣ > ε

and A′ has complexity ≤ t, thus contradicting the (t, ε) pseudorandomness of
G.

2. Let f : {0, 1}n → {0, 1}m be a (t, ε)-secure one-way function.

Show that

t

ε
≤ O((m+ n) · 2n)

1

Solution. We need to show that for every ε there is an algorithm Aε of com-
plexity ≤ O((m+ n) · ε · 2n) such that

P
x
[Aε(f(x)) = x′ : f(x) = f(x′)] ≥ ε

We define Aε to have a look-up table contained ε · 2n pairs (x, f(x)), one for
each x belonging to an arbitrarily chosen set S of size ε2n. (For example the
first ε2n strings in lexicographic order.)

On input y, we determine if y is a second element of any pair in the table, and,
if so, we output the first element. If the look-up table is sorted, the algorithm
can use binary search, and have running time O((m + n) · n); the size of the
table dominates the complexity.

3. Let f : {0, 1}n → {0, 1}n be a (t, ε)-secure one-way permutation computable in
time ≤ r.

Show that

t2

ε
≤ O((r + n2)2 · 2n)

[Hint: first show that, for any permutation f : {0, 1}n → {0, 1}n, there is an
algorithm of complexity O(r · 2n/2) that inverts the permutation everywhere.
The algorithm is given a pre-computed data structure of size O(n2n/2) and runs
in time O(r2n/2). Recall that in our model of computation we do not pay for
the price of pre-computing data at “compile time,” we only pay the sum of
the length of the program, including any fixed data it needs access to, plus the
worst-case running time.]

Solution. We need to show that for every ε there is an algorithm Aε of com-
plexity O((r + n2)

√
ε2n) that inverts f() on at least an ε fraction of inputs.

Consider the graph that has one vertex for every element x ∈ {0, 1}n and one
directed edge (x, f(x)) for every x ∈ {0, 1}n. Thus, every vertex has in-degree
one and out-degree one, and the graph is a collection of disjoint cycles. The
problem of inverting f() can be thought of as the problem: given a vertex in
the graph, find the predecessor of that vertex in the cycle that it belongs to.

A simple algorithm for inverting f() is to simply “walk” on the graph: given
y ∈ {0, 1}n, we compute f(y), f(f(y)), and so on, until we return to the value y;
the value we encounter before returning to y is the unique x such that y = f(x).
Unfortunately, if f() defines a graph containing just one huge cycle, then the
running time of this algorithm is r ·2n, which is no better than trying all possible
pre-images by brute force.

2

The idea is then to construct a data structure containing “shortcuts.” Let
` =
√
ε2n (assume for simplicity that it’s an integer). For every cycle of length

L ≥ 2`, we pick vertices x1, . . . , xk, k = bL/`c, which are equally spaced around
the cycle (possibly xk is slightly closer to x1 to account for rounding error), and
we add the pairs (x1, x2), (x2, x3), . . . , (xk, x1) to the data structure. Note that
at most a 1/` fraction of vertices in each cycle give rise to elements of the data
structure. We stop the construction when we run out of long cycles or when we
have added

√
ε2n pairs to the data structure, whichever comes first.

Now consider the algorithm Aε

• Input: y

• y0 := y

• for i := 0 to 2
√
ε2n

– If there is a pair (x1, x2) in the data structure such that x2 == yi,
then yi+1 := x1

– Else yi+1 := f(yi)

– If yi+1 == y then return yi

• return FAIL

that, on input y, computes y1 = f(y), y2 = f(y1) = f(f(y)) and so on as
before, but, in addition, at every step checks not only whether yi+1 = y, but
also whether yi is a second element of a pair in the data structure. In the first
case, of course we output yi. In the second case, we continue with the first
element of the pair, which corresponds to moving backwards on the cycle by
roughly ` steps (and no more than 2`). If we don’t find an inverse within 2`
steps, we fail.

Note that we invert all the elements that belong to cycles of length ≤ 2`, and,
for every pair that we add to the data structure, we add at least ` elements to
the set of inputs that are correctly inverted by the algorithm, so the algorithm
correctly inverts at least `2 elements, that is, at least ε2n, which is at least an
ε fraction of the total.

Every step of the algorithm requires time r to evaluate f and time O(n2) to
search the data structure.

4. Let f : {0, 1}n → {0, 1}n be a (t, ε)-secure one-way function computable in time
r.

Show that g : {0, 1}2n → {0, 1}2n defined as g(x, y) := f(x), f(y) is (t−O(r), ε)-
secure.

3

Solution. Suppose that g is not (t−O(r), ε) secure, and let A be an algorithm
of complexity tA = t−O(r) such that

P
x,y

[A(f(x), f(y)) = (x′, y′) : f(x′) = f(x) ∧ f(y′) = f(y)] > ε

Then consider the algorithm A′ that, on input z, picks a random y ∈ {0, 1}n
and simulates A(z, f(y)), then return the first output of A(z, f(y)).

We have

P
x
[A′(f(x)) = x′ : f(x) = f(x′)] = P

x,y
[A(f(x), f(y)) = (x′, y′) : f(x′) = f(x)] > ε

And note that A′ has complexity ≤ tA + n + r ≤ t, contradicting the (t, ε)
security of f .

5. Let p be a prime and g be a generator for Z∗p such that f(x) := gx mod p is a
(t, 0.99)-one way permutation. Let k = dlog2 pe be the number of digits of p;
then recall that f() is computable in time O(k3).

Show that f() is also (1
24,000

(t−O(k3)), 0.51)-one way.

Solution. Suppose f() is not (1
24,000

(t − O(k3)), 0.51) one way, so that there

is an algorithm A of complexity tA ≤ 1
24,000

(t−O(k3)) such that

P
x∈{0,...,p−1}

[A(gx) = x] ≥ .51

Now, suppose we are given y = gx, and consider the process of picking a random
r ∈ {0, . . . , p− 1} and computing A(y · gr). Then, with probability at least .51,
the answer will be the correct one, x+ r mod p− 1. If we subtract r, we get x.
This process succeeds for every x, with probability at least 51%. If we repeat
the process for k randomly chosen r, then we will find the correct answer on
average at least .51 · k times, and the probability that the majority answer is
correct is at least

1− e−2k/10,000

using the Chernoff bound. This probability is at least .99 provided that k ≥
23026.

Overall, we have the following algorithm A′:

4

• Input: y

• For i = 1 to 23, 026

– Pick random r

– xi := A(gr · y)− r mod (p− 1)

• Return most frequent value among xi

This algorithm runs in time ≤ 23, 026 · (tA +O(k3)) ≤ t and inverts f on more
than a 99% fraction of inputs.

6. Recall that if F : {0, 1}n → {0, 1}n is a function then the we define the Feistel
permutation DF (x, y) := y, x⊕ F (y).

Show that there is an efficient oracle algorithm A such that

P
Π:{0,1}2m→{0,1}2m

[AΠ,Π−1

= 1] = 2−Ω(m)

where Π is a random permutation, but for every three functions F1, F2, F3, if
we define P (x) := DF3(DF2(DF1(x))) we have

AP,P
−1

= 1

[Note: I don’t know the solution.]

5

