Solutions to Problem Set 3

1. Let $G : \{0,1\}^n \to \{0,1\}^{2n}$ be a (t,ϵ) -secure pseudorandom generator computable in time r. Show that G is also a $(t-r-O(n), \epsilon+2^{-n})$ -secure one way function.

Solution. Suppose that A is an algorithm of complexity t - r - O(n) such that

$$\mathbb{P}_{x}[A(G(x)) = x' : G(x) = G(x')] > \epsilon + 2^{-n}$$
(1)

Consider the algorithm A' that, on input y, computes A(y) and then outputs 1 if and only if G(A(y)) = y. Then, from (1) we have

$$\mathbb{P}_{x \in \{0,1\}^n}[A'(G(x)) = 1] > \epsilon + 2^{-n}$$

Now note that we can have A'(y) = 1 only if y is a possible output of G, and G has at most 2^n possible outputs so

$$\mathbb{P}_{z \in \{0,1\}^{2n}}[A'(z) = 1] \le \mathbb{P}_{z \in \{0,1\}^{2n}}[z \text{ is a possible output of } G] \le \frac{2^n}{2^{2n}} = 2^{-n}$$

and so

$$\left| \mathbb{P}_{x \in \{0,1\}^n} [A'(G(x)) = 1] - \mathbb{P}_{z \in \{0,1\}^{2n}} [A'(z) = 1] \right| > \epsilon$$

and A' has complexity $\leq t$, thus contradicting the (t, ϵ) pseudorandomness of G.

2. Let $f:\{0,1\}^n \to \{0,1\}^m$ be a $(t,\epsilon)\text{-secure one-way function.}$ Show that

$$\frac{t}{\epsilon} \le O((m+n) \cdot 2^n)$$

Solution. We need to show that for every ϵ there is an algorithm A_{ϵ} of complexity $\leq O((m+n) \cdot \epsilon \cdot 2^n)$ such that

$$\mathbb{P}_{x}[A_{\epsilon}(f(x)) = x' : f(x) = f(x')] \ge \epsilon$$

We define A_{ϵ} to have a look-up table contained $\epsilon \cdot 2^n$ pairs (x, f(x)), one for each x belonging to an arbitrarily chosen set S of size $\epsilon 2^n$. (For example the first $\epsilon 2^n$ strings in lexicographic order.)

On input y, we determine if y is a second element of any pair in the table, and, if so, we output the first element. If the look-up table is sorted, the algorithm can use binary search, and have running time $O((m + n) \cdot n)$; the size of the table dominates the complexity.

3. Let $f : \{0,1\}^n \to \{0,1\}^n$ be a (t,ϵ) -secure one-way permutation computable in time $\leq r$.

Show that

$$\frac{t^2}{\epsilon} \leq O((r+n^2)^2 \cdot 2^n)$$

[Hint: first show that, for any permutation $f : \{0,1\}^n \to \{0,1\}^n$, there is an algorithm of complexity $O(r \cdot 2^{n/2})$ that inverts the permutation everywhere. The algorithm is given a pre-computed data structure of size $O(n2^{n/2})$ and runs in time $O(r2^{n/2})$. Recall that in our model of computation we do not pay for the price of pre-computing data at "compile time," we only pay the sum of the length of the program, including any fixed data it needs access to, plus the worst-case running time.]

Solution. We need to show that for every ϵ there is an algorithm A_{ϵ} of complexity $O((r+n^2)\sqrt{\epsilon 2^n})$ that inverts f() on at least an ϵ fraction of inputs.

Consider the graph that has one vertex for every element $x \in \{0, 1\}^n$ and one directed edge (x, f(x)) for every $x \in \{0, 1\}^n$. Thus, every vertex has in-degree one and out-degree one, and the graph is a collection of disjoint cycles. The problem of inverting f() can be thought of as the problem: given a vertex in the graph, find the *predecessor* of that vertex in the cycle that it belongs to.

A simple algorithm for inverting f() is to simply "walk" on the graph: given $y \in \{0, 1\}^n$, we compute f(y), f(f(y)), and so on, until we return to the value y; the value we encounter before returning to y is the unique x such that y = f(x). Unfortunately, if f() defines a graph containing just one huge cycle, then the running time of this algorithm is $r \cdot 2^n$, which is no better than trying all possible pre-images by brute force.

The idea is then to construct a data structure containing "shortcuts." Let $\ell = \sqrt{\epsilon 2^n}$ (assume for simplicity that it's an integer). For every cycle of length $L \geq 2\ell$, we pick vertices $x_1, \ldots, x_k, k = \lfloor L/\ell \rfloor$, which are equally spaced around the cycle (possibly x_k is slightly closer to x_1 to account for rounding error), and we add the pairs $(x_1, x_2), (x_2, x_3), \ldots, (x_k, x_1)$ to the data structure. Note that at most a $1/\ell$ fraction of vertices in each cycle give rise to elements of the data structure. We stop the construction when we run out of long cycles or when we have added $\sqrt{\epsilon 2^n}$ pairs to the data structure, whichever comes first.

Now consider the algorithm A_{ϵ}

- Input: y
- $y_0 := y$
- for i := 0 to $2\sqrt{\epsilon 2^n}$
 - If there is a pair (x_1, x_2) in the data structure such that $x_2 == y_i$, then $y_{i+1} := x_1$
 - Else $y_{i+1} := f(y_i)$
 - If $y_{i+1} == y$ then return y_i
- \bullet return FAIL

that, on input y, computes $y_1 = f(y)$, $y_2 = f(y_1) = f(f(y))$ and so on as before, but, in addition, at every step checks not only whether $y_{i+1} = y$, but also whether y_i is a second element of a pair in the data structure. In the first case, of course we output y_i . In the second case, we continue with the first element of the pair, which corresponds to moving backwards on the cycle by roughly ℓ steps (and no more than 2ℓ). If we don't find an inverse within 2ℓ steps, we fail.

Note that we invert all the elements that belong to cycles of length $\leq 2\ell$, and, for every pair that we add to the data structure, we add at least ℓ elements to the set of inputs that are correctly inverted by the algorithm, so the algorithm correctly inverts at least ℓ^2 elements, that is, at least $\epsilon 2^n$, which is at least an ϵ fraction of the total.

Every step of the algorithm requires time r to evaluate f and time $O(n^2)$ to search the data structure.

4. Let $f: \{0,1\}^n \to \{0,1\}^n$ be a (t,ϵ) -secure one-way function computable in time r.

Show that $g: \{0,1\}^{2n} \to \{0,1\}^{2n}$ defined as g(x,y) := f(x), f(y) is $(t - O(r), \epsilon)$ -secure.

Solution. Suppose that g is not $(t - O(r), \epsilon)$ secure, and let A be an algorithm of complexity $t_A = t - O(r)$ such that

$$\mathbb{P}_{x,y}[A(f(x), f(y)) = (x', y') : f(x') = f(x) \land f(y') = f(y)] > \epsilon$$

Then consider the algorithm A' that, on input z, picks a random $y \in \{0,1\}^n$ and simulates A(z, f(y)), then return the first output of A(z, f(y)). We have

$$\mathbb{P}_{x}[A'(f(x)) = x' : f(x) = f(x')] = \mathbb{P}_{x,y}[A(f(x), f(y)) = (x', y') : f(x') = f(x)] > \epsilon$$

And note that A' has complexity $\leq t_A + n + r \leq t$, contradicting the (t, ϵ) security of f.

5. Let p be a prime and g be a generator for \mathbb{Z}_p^* such that $f(x) := g^x \mod p$ is a (t, 0.99)-one way permutation. Let $k = \lceil \log_2 p \rceil$ be the number of digits of p; then recall that f() is computable in time $O(k^3)$.

Show that f() is also $(\frac{1}{24,000}(t - O(k^3)), 0.51)$ -one way.

Solution. Suppose f() is not $(\frac{1}{24,000}(t - O(k^3)), 0.51)$ one way, so that there is an algorithm A of complexity $t_A \leq \frac{1}{24,000}(t - O(k^3))$ such that

$$\mathbb{P}_{x \in \{0, \dots, p-1\}}[A(g^x) = x] \ge .51$$

Now, suppose we are given $y = g^x$, and consider the process of picking a random $r \in \{0, \ldots, p-1\}$ and computing $A(y \cdot g^r)$. Then, with probability at least .51, the answer will be the correct one, $x + r \mod p - 1$. If we subtract r, we get x. This process succeeds for every x, with probability at least 51%. If we repeat the process for k randomly chosen r, then we will find the correct answer on average at least .51 $\cdot k$ times, and the probability that the majority answer is correct is at least

$$1 - e^{-2k/10,000}$$

using the Chernoff bound. This probability is at least .99 provided that $k \ge 23026$.

Overall, we have the following algorithm A':

- Input: y
- For i = 1 to 23,026
 - Pick random r

 $- x_i := A(g^r \cdot y) - r \bmod (p-1)$

• Return most frequent value among x_i

This algorithm runs in time $\leq 23,026 \cdot (t_A + O(k^3)) \leq t$ and inverts f on more than a 99% fraction of inputs.

6. Recall that if $F : \{0, 1\}^n \to \{0, 1\}^n$ is a function then the we define the Feistel permutation $D_F(x, y) := y, x \oplus F(y)$.

Show that there is an efficient oracle algorithm A such that

$$\mathbb{P}_{\Pi:\{0,1\}^{2m} \to \{0,1\}^{2m}}[A^{\Pi,\Pi^{-1}} = 1] = 2^{-\Omega(m)}$$

where Π is a random permutation, but for every three functions F_1, F_2, F_3 , if we define $P(x) := D_{F_3}(D_{F_2}(D_{F_1}(x)))$ we have

$$A^{P,P^{-1}} = 1$$

[Note: I don't know the solution.]