U.C. Berkeley — CS276: Cryptography Handout SP3
Luca Trevisan March 23, 2009

Solutions to Problem Set 3

1. Let G : {0,1}" — {0,1}*" be a (t,¢)-secure pseudorandom generator com-
putable in time 7.

Show that G is also a (t —r — O(n), e + 27™)-secure one way function.

Solution. Suppose that A is an algorithm of complexity t — r — O(n) such
that

}E’[A(G(x)) =2 :Gx)=G)] >e+27" (1)

Consider the algorithm A’ that, on input y, computes A(y) and then outputs 1
if and only if G(A(y)) = y. Then, from (1) we have

P [A(G(z))=1]>e+27"

z€{0,1}"
Now note that we can have A’(y) = 1 only if y is a possible output of G, and G

has at most 2" possible outputs so

n

2
P [A(z)=1< P [zisapossible output of G] < — =27"
26{071}2"7’ 26{071}2” 2271

and so
P [A(G) =1~ P [Az)=1]|>¢
ze{0,1}n z€{0,1}2n

and A’ has complexity < ¢, thus contradicting the (¢, ¢) pseudorandomness of

G.

2. Let f:{0,1}" — {0,1}" be a (t, €)-secure one-way function.
Show that

<O((m+mn)-2")

A |

Solution. We need to show that for every € there is an algorithm A, of com-
plexity < O((m +n) - €-2") such that

We define A, to have a look-up table contained € - 2™ pairs (z, f(x)), one for
each z belonging to an arbitrarily chosen set S of size €2". (For example the
first €2" strings in lexicographic order.)

On input y, we determine if y is a second element of any pair in the table, and,
if so, we output the first element. If the look-up table is sorted, the algorithm
can use binary search, and have running time O((m + n) - n); the size of the
table dominates the complexity.

. Let f:{0,1}" — {0,1}" be a (t, €)-secure one-way permutation computable in
time < r.

Show that

2
= <O+)P 2)

[Hint: first show that, for any permutation f : {0,1}" — {0,1}", there is an
algorithm of complexity O(r - 2*/2) that inverts the permutation everywhere.
The algorithm is given a pre-computed data structure of size O(n2"/?) and runs
in time O(r2”/ 2). Recall that in our model of computation we do not pay for
the price of pre-computing data at “compile time,” we only pay the sum of
the length of the program, including any fixed data it needs access to, plus the
worst-case running time.|

Solution. We need to show that for every e there is an algorithm A, of com-
plexity O((r + n?)v/e2") that inverts f() on at least an e fraction of inputs.

Consider the graph that has one vertex for every element z € {0,1}" and one
directed edge (z, f(z)) for every x € {0,1}". Thus, every vertex has in-degree
one and out-degree one, and the graph is a collection of disjoint cycles. The
problem of inverting f() can be thought of as the problem: given a vertex in
the graph, find the predecessor of that vertex in the cycle that it belongs to.

A simple algorithm for inverting f() is to simply “walk” on the graph: given
y € {0, 1}", we compute f(y), f(f(y)), and so on, until we return to the value y;
the value we encounter before returning to y is the unique z such that y = f(z).
Unfortunately, if f() defines a graph containing just one huge cycle, then the
running time of this algorithm is 7-2", which is no better than trying all possible
pre-images by brute force.

The idea is then to construct a data structure containing “shortcuts.” Let
¢ = /€2 (assume for simplicity that it’s an integer). For every cycle of length
L > 2(, we pick vertices z1, ..., x, k = | L/{], which are equally spaced around
the cycle (possibly xy is slightly closer to z; to account for rounding error), and
we add the pairs (z1,x2), (x2, 23),. .., (xk, x1) to the data structure. Note that
at most a 1/¢ fraction of vertices in each cycle give rise to elements of the data
structure. We stop the construction when we run out of long cycles or when we
have added v/e2" pairs to the data structure, whichever comes first.

Now consider the algorithm A,

e Input: y

® Yo =Y
o fori:=0 to 2ve2"

— If there is a pair (z1,x2) in the data structure such that xo == y;,
then y; 11 == x4

— Else yi11 = f(y:)
— If y;.1 == y then return y;

o return FFAIL

that, on input y, computes g = f(y), g2 = f(y1) = F(f(y)) and so on as
before, but, in addition, at every step checks not only whether y; .1 = y, but

also whether y; is a second element of a pair in the data structure. In the first
case, of course we output ;. In the second case, we continue with the first
element of the pair, which corresponds to moving backwards on the cycle by
roughly ¢ steps (and no more than 2¢). If we don’t find an inverse within 2¢
steps, we fail.

Note that we invert all the elements that belong to cycles of length < 2/, and,
for every pair that we add to the data structure, we add at least ¢ elements to
the set of inputs that are correctly inverted by the algorithm, so the algorithm
correctly inverts at least /2 elements, that is, at least €2", which is at least an
e fraction of the total.

Every step of the algorithm requires time r to evaluate f and time O(n?) to
search the data structure.

. Let f:{0,1}" — {0,1}" be a (t, €)-secure one-way function computable in time
T
Show that ¢ : {0,1}** — {0, 1}*" defined as g(x,y) := f(z), f(y) is (t—O(r), €)-

secure.

Solution. Suppose that g is not (t—O(r), €) secure, and let A be an algorithm
of complexity t4 =t — O(r) such that

PIAU (@), fv)) = (&) : f(2) = J@) A f () = ()] > e
Then consider the algorithm A’ that, on input z, picks a random y € {0,1}"
and simulates A(z, f(y)), then return the first output of A(z, f(v)).

We have

PIA'(f(z)) =2": f(z) = f(2)] = P[A(f(2), f(y)) = (" ¢/) : f(2') = f(2)] > €

T z,Y

And note that A’ has complexity < t4 + n + r < t, contradicting the (¢,¢)
security of f.

. Let p be a prime and g be a generator for Z; such that f(z) :=¢g"modpis a
(,0.99)-one way permutation. Let k = [log,p]| be the number of digits of p;
then recall that f() is computable in time O(k?).

Show that f() is also (57555 (t — O(k*)),0.51)-one way.

Solution. Suppose f() is not (z7455(t — O(k*)),0.51) one way, so that there

is an algorithm A of complexity t4 < 5555 (t — O(k?)) such that

P [A(g") =] = .51

Now, suppose we are given y = ¢g*, and consider the process of picking a random
r €40,...,p—1} and computing A(y - ¢g"). Then, with probability at least .51,
the answer will be the correct one, x +r mod p — 1. If we subtract r, we get x.
This process succeeds for every x, with probability at least 51%. If we repeat
the process for k randomly chosen r, then we will find the correct answer on
average at least .51 - k times, and the probability that the majority answer is
correct is at least

1 — —2k/10,000

using the Chernoff bound. This probability is at least .99 provided that & >
23026.

Overall, we have the following algorithm A’:

e Input: y

e For ¢ =1 to 23,026
— Pick random r
—z;:=A(g"-y) —rmod (p—1)

e Return most frequent value among z;

This algorithm runs in time < 23,026 - (t4 + O(k*)) < t and inverts f on more
than a 99% fraction of inputs.

. Recall that if F': {0,1}" — {0,1}" is a function then the we define the Feistel
permutation Dp(x,y) :=y,z & F(y).

Show that there is an efficient oracle algorithm A such that

[AH,H71 — 1] — 2—Q(m)
I1:{0,1}>m—{0,1}2m

where II is a random permutation, but for every three functions Fi, Fy, Fj, if
we define P(x) := Dp,(Dpg,(Dp,(x))) we have

APPT =

[Note: T don’t know the solution.]

