U.C. Berkeley — CS276: Cryptography Handout SP2
Luca Trevisan March 22, 2009

Solutions to Problem Set 2

1. Suppose that F : {0,1}* x {0,1}™ — {0,1}™ is a (¢,¢) secure pseudorandom
function.
Consider the following randomized MAC scheme (we shall assume for simplicity

that m is a multiple of 3 and the scheme is defined only for messages whose
length is a multiple of m/3 and is at most 2 - 2/3-1);

o Tag(K, M)
— divide M into blocks Mj, ..., M, of length m/3
— pick a random r € {0,1}"/3
— return (r, F(r,0,1, My), Fr(r,0,2, Ms), ..., Fx(r,1,¢, My))

b V@Tny(K, M’ (T’, f17 R ff))
— divide M into blocks M, ..., M, of length m/3
— check that for every i € {1,...,¢—1} we have f; = Fi(r,0,7, M;) and
that we have f, = Fi(r,1,¢, M,).

Show that this scheme is (t/O(L), e + t> - 27™/3 4 27™)_secure, where L is an
upper bound to the length of the messages that we are going to authenticate.

Solution. We repeat the analysis we did in Section 3 of Lecture 7. The only
thing that changes is, at the very end, the second case of the case analysis.

Let A be an algorithm running in time ¢ = t/O(L) and mounting a chosen
message attack which is able to forge the MAC scheme with probability 4.
Consider the MAC T,V which is identical to the scheme described above except
that it uses a purely random function instead of a pseudorandom function. Let
A’ be the algorithm that given a function oracle F' simulates A and simulates
every authentication query made by A by running the above T'ag algorithm with
the oracle F' instead of the pseudorandom function. At the end, A’ outputs 1 if
and only if the simulation of A has produced a valid forgery. Note that A’ runs
in time < ¢ - L < t, and so we must have

]P)A/FK() =1] = P A’R() =1l <
A0 == B ) 1)<

because of the pseudorandomness of F.

1



This implies that

P[A() = 1] = P[ATY outputs a forged MAC for T, R] > 6§ — €
R R

It remains to show that the probability that an algorithm A of running time

t' <t can produce a forgery for (T, V) is at most 2 - 277/3 4-27™,

We may assume that A never queries the Tag oracle twice on the same message.
Let FORGE be the event that A finds a valid forgery for T, V. Consider the
event RE P that, during the execution of A, the random strings r used by the
tagging algorithm are not all different. Note that A can query messages of total
length at most ¢ (because it runs in total time at most t), and so

2

IE[REP] < Sy

Now, consider what happens when we have FORGE A =REP, that is, A%,
simulating A"V, uses different random strings 7 in each simulated invocation of
T, and it produces a valid forgery (r,Ty,...,T;) of a new message (M, ..., M)
at the end. We claim that, in such a case, A" correctly guesses the value of R
at an input for which R() had not been evaluated before. Once we prove the
claim, we immediately get

1

PI[FORGE A ~REP| <

and so

12 1
P[FORGE] < P[FORGE N —-REP|+P[REP] < —= + —
R R R om/3 ~ gm
as needed.

It remains to Prove the claim. Call M*, ..., M7 the messages that A’ authen-
ticates with T, and let M be the forgery at the end. Let r',...,79 r be the
random strings used in the tagging of M!,... M4, M, respectively. We consider
two cases:

(a) If r is different from all the r?, then the first block T} in the forged
tag (r,T1,...,Ty) of M contains the value R(r,0,1, M;) which was never
queried before to the R() oracle.

(b) If r is equal to some of the 77, then it can be equal to exactly one r7, because
the random strings r/ are different from each other. (Recall that we are
considering a computation of A’ that satisfied the event FORGEAN-REP.)



Now compare M with M7. If M and M’ have the same length (measured
as number of blocks of length m/3 each) ¢, then when we write M =
Mi,...,M, and M7 = M{,...,Mg, there must be a block ¢ such that
M; # M. (Otherwise we would have M = M7 which cannot be because
we are considering a case that satisfied the event FORGE.) Then the
block T; in the forget tag of M is the correct evaluation of R() at a point
that had not been queried before.

Finally, if M and M’ have different lengths, let ¢’ be the shortest of the
two lengths, and observe that T} is the correct evaluation of R() at a point
that had not been queried before.

2. Fix a randomized algorithm P (for “padding”) that on input a string in {0, 1}
runs in time < 7 and outputs another string in {0,1}™. Let (Enc, Dec) be an
encryption scheme that encrypts blocks of length 2m, and cosider the modified
encryption scheme (PEnc, PDec) defined so that a message M is first padded
by appending P(M) and then it is encrypted with Enc:

e PEnc(K,M) := Enc(K,(M,P(M)))’
e PDenc(K,C):
— (M, My) := Dec(K,C)

— return M,

Prove that

(a) If (Enc, Dec) is (t,e)-message indistinguishable, then (PEnc, PDec) is
(t, €)-message indistinguishable.
[Hint: you may find it easier to first argue the case in which P is deter-
ministic. ]

Solution. Suppose (PEnc, PDec) is not (t, €) message indistinguishable,
so that there are messages mg, m; and an algorithm A of complexity < ¢
such that

| P[A(PEnc(mg)) = 1] — P[A(PEnc(my)) = 1]| > ¢

This is equivalent to

| P[A(Enc(mg, P(my))) = 1] — P[A(Enc(mq, P(my))) = 1]| > €

If P() is deterministic, then the algorithm A and the plaintexts (mq, P(my))
and (mq, P(my)) contradict the (¢, €) message indistinguishability of (Enc, Dec).



If P() is probabilistic, then we can write P,.(m) for the output of P() when
taking the input m and using internal randomness r. Then we have

| PLA(Enc(mo, Pr(mo))) = 1] = P[A(Enc(my, F(ma))) = 1] > e (1)

where the probability is over the randomness of Enc and over the random
choice of r.

We can rewrite (1) as

E(P[A(Enc(mo, Pr(mo))) = 1] = PIA(Enc(my, F.(m1))) = 1])] > € (2)

r

and, using the triangle inequality,

]Ef, | P[A(Enc(mg, P-(mg))) = 1] — P[A(Enc(my, P,(my))) = 1]| > €

so that there must exist a particular choice of r, say ry such that

| PLA(Enc(mo, Pry(mo))) = 1] = PIA(Enc(ma, Pry(m1))) = 1]| > €

and so the algorithm A and the messages (my, Py, (myg)) contradict the (¢, €)
message indistinguishability of (Enc, Dec).

If (Enc, Dec) is (t,e) CPA secure, then (PEnc, PDec) is (t/r,€) CPA se-
cure.

Solution. Suppose (PEnc, PDec) is not (t/r,e) CPA secure, so that
there are messages mg, m; and an algorithm A of complexity < t/r such
that

| P[ATE™(PEnc(mg)) = 1] — P[ATE™(PEnc(m,)) = 1]| > € (3)

Consider the oracle algorithm A’ that on input a ciphertext C' and given
an oracle F, simulates A(C); every time A makes an oracle queries m;, A’
simulates it with the outcome of the query E(m;, P(m;)), where E is the
oracle given to A’. Note that if P is computable in time r, and A runs in
time ¢/r, then A’ runs in time < ¢. Expression (3) becomes

]P)[A’E”C(Enc(mo, P(my))) =1] — P[AE”C(Enc(ml,P(m1))) =1]| > ¢

4



If P is deterministic, then the messages (mq, P(mg)) and (ms, P(m;)) and
the algorithm A’ contradict the (¢,¢) CPA security of (Enc, Dec). If P()
is probabilistic, we can use the same averaging trick we used in part (a).

If (Enc, Dec) is (t,e) CCA secure, then (PEnc, PDec) is (t/O(r),e) CCA

secure.

Solution. Suppose (PEnc, PDec) is not (t/O(r), e) CCA secure, so that
there are messages mg, m; and an algorithm A of complexity < t/O(r)
such that

| P[ATErePPec(PEnc(my)) = 1] — P[ATE PP PEnc(my)) = 1]] > € (4)

Consider the oracle algorithm A’ that on input a ciphertext C' and given
oracle F, D, simulates A(C') as follows:

e cvery time A makes an oracle queries m; to PEnc, A’ simulates it
with the outcome of the query FE(m;, P(m;)), where E is the first
oracle given to A’;

e every time A makes an oracle query C; to PDec, A" simulates it by
querying Cj; into its second oracle D, receiving a pair (m;, P;) as an
answer, and it continues the simulation as if m; had been the query
returned by PDec to A.

Note that if P is computable in time 7, and A runs in time ¢/O(r), then
A’ runs in time < ¢t. Expression (4) becomes

P[A/EnC’DeC(ETLC<mO, P(mo))) _ 1]—P[AEnC7Dec(EnC(m1,P(ml))) = 1]| > €

If P is deterministic, then the messages (mq, P(mg)) and (my, P(m,)) and
the algorithm A’ contradict the (t,€) CPA security of (Enc, Dec). If P()
is probabilistic, we can use the same averaging trick we used in parts (a)
and (b).



