
U.C. Berkeley — CS276: Cryptography Handout SP2
Luca Trevisan March 22, 2009

Solutions to Problem Set 2

1. Suppose that F : {0, 1}k × {0, 1}m → {0, 1}m is a (t, ε) secure pseudorandom
function.

Consider the following randomized MAC scheme (we shall assume for simplicity
that m is a multiple of 3 and the scheme is defined only for messages whose
length is a multiple of m/3 and is at most m

3
· 2m/3−1):

• Tag(K,M)

– divide M into blocks M1, . . . ,M` of length m/3

– pick a random r ∈ {0, 1}m/3

– return (r, FK(r, 0, 1,M1), FK(r, 0, 2,M2), . . . , FK(r, 1, `,M`))

• V erify(K,M, (r, f1, . . . , f`))

– divide M into blocks M1, . . . ,M` of length m/3

– check that for every i ∈ {1, . . . , `− 1} we have fi = FK(r, 0, i,Mi) and
that we have f` = FK(r, 1, `,M`).

Show that this scheme is (t/O(L), ε + t2 · 2−m/3 + 2−m)-secure, where L is an
upper bound to the length of the messages that we are going to authenticate.

Solution. We repeat the analysis we did in Section 3 of Lecture 7. The only
thing that changes is, at the very end, the second case of the case analysis.

Let A be an algorithm running in time t′ = t/O(L) and mounting a chosen
message attack which is able to forge the MAC scheme with probability δ.
Consider the MAC T , V which is identical to the scheme described above except
that it uses a purely random function instead of a pseudorandom function. Let
A′ be the algorithm that given a function oracle F simulates A and simulates
every authentication query made by A by running the above Tag algorithm with
the oracle F instead of the pseudorandom function. At the end, A′ outputs 1 if
and only if the simulation of A has produced a valid forgery. Note that A′ runs
in time ≤ t′ · L < t, and so we must have

|P
K

[A′FK()() = 1]− P
R:{0,1}m→{0,1}m

[A′R()() = 1]| ≤ ε

because of the pseudorandomness of FK .

1

This implies that

P
R

[A′R() = 1] = P
R

[AT ,V outputs a forged MAC for T ,R] ≥ δ − ε

It remains to show that the probability that an algorithm A of running time
t′ ≤ t can produce a forgery for (T , V) is at most t2 · 2−m/3 + 2−m.

We may assume that A never queries the Tag oracle twice on the same message.
Let FORGE be the event that A finds a valid forgery for T , V . Consider the
event REP that, during the execution of A, the random strings r used by the
tagging algorithm are not all different. Note that A can query messages of total
length at most t (because it runs in total time at most t), and so

P
R

[REP] ≤ t2

2m/3

Now, consider what happens when we have FORGE ∧ ¬REP , that is, A′R,
simulating AT ,V , uses different random strings r in each simulated invocation of
T , and it produces a valid forgery (r, T1, . . . , T`) of a new message (M1, . . . ,M`)
at the end. We claim that, in such a case, A′ correctly guesses the value of R
at an input for which R() had not been evaluated before. Once we prove the
claim, we immediately get

P[FORGE ∧ ¬REP] ≤ 1

2m

and so

P
R

[FORGE] ≤ P
R

[FORGE ∧ ¬REP] + P
R

[REP] ≤ t2

2m/3
+

1

2m

as needed.

It remains to Prove the claim. Call M1, . . . ,M q the messages that A′ authen-
ticates with T , and let M be the forgery at the end. Let r1, . . . , rq, r be the
random strings used in the tagging of M1, . . . ,M q,M , respectively. We consider
two cases:

(a) If r is different from all the ri, then the first block T1 in the forged
tag (r, T1, . . . , T`) of M contains the value R(r, 0, 1,M1) which was never
queried before to the R() oracle.

(b) If r is equal to some of the rj, then it can be equal to exactly one rj, because
the random strings rj are different from each other. (Recall that we are
considering a computation of A′ that satisfied the event FORGE∧¬REP .)

2

Now compare M with M j. If M and M j have the same length (measured
as number of blocks of length m/3 each) `, then when we write M =
M1, . . . ,M` and M j = M j

1 , . . . ,M
j
` , there must be a block i such that

Mi 6= M j
i . (Otherwise we would have M = M j which cannot be because

we are considering a case that satisfied the event FORGE.) Then the
block Ti in the forget tag of M is the correct evaluation of R() at a point
that had not been queried before.

Finally, if M and M j have different lengths, let `′ be the shortest of the
two lengths, and observe that T`′ is the correct evaluation of R() at a point
that had not been queried before.

2. Fix a randomized algorithm P (for “padding”) that on input a string in {0, 1}m
runs in time ≤ r and outputs another string in {0, 1}m. Let (Enc,Dec) be an
encryption scheme that encrypts blocks of length 2m, and cosider the modified
encryption scheme (PEnc, PDec) defined so that a message M is first padded
by appending P (M) and then it is encrypted with Enc:

• PEnc(K,M) := Enc(K, (M,P (M)))’

• PDenc(K,C):

– (M1,M2) := Dec(K,C)

– return M1

Prove that

(a) If (Enc,Dec) is (t, ε)-message indistinguishable, then (PEnc, PDec) is
(t, ε)-message indistinguishable.

[Hint: you may find it easier to first argue the case in which P is deter-
ministic.]

Solution. Suppose (PEnc, PDec) is not (t, ε) message indistinguishable,
so that there are messages m0,m1 and an algorithm A of complexity ≤ t
such that

|P[A(PEnc(m0)) = 1]− P[A(PEnc(m1)) = 1]| > ε

This is equivalent to

|P[A(Enc(m0, P (m0))) = 1]− P[A(Enc(m1, P (m1))) = 1]| > ε

If P () is deterministic, then the algorithmA and the plaintexts (m0, P (m0))
and (m1, P (m1)) contradict the (t, ε) message indistinguishability of (Enc,Dec).

3

If P () is probabilistic, then we can write Pr(m) for the output of P () when
taking the input m and using internal randomness r. Then we have

|P[A(Enc(m0, Pr(m0))) = 1]− P[A(Enc(m1, Pr(m1))) = 1]| > ε (1)

where the probability is over the randomness of Enc and over the random
choice of r.

We can rewrite (1) as

∣∣∣∣E
r
(P[A(Enc(m0, Pr(m0))) = 1]− P[A(Enc(m1, Pr(m1))) = 1])

∣∣∣∣ > ε (2)

and, using the triangle inequality,

E
r
|P[A(Enc(m0, Pr(m0))) = 1]− P[A(Enc(m1, Pr(m1))) = 1]| > ε

so that there must exist a particular choice of r, say r0 such that

|P[A(Enc(m0, Pr0(m0))) = 1]− P[A(Enc(m1, Pr0(m1))) = 1]| > ε

and so the algorithm A and the messages (m0, Pr0(m0)) contradict the (t, ε)
message indistinguishability of (Enc,Dec).

(b) If (Enc,Dec) is (t, ε) CPA secure, then (PEnc, PDec) is (t/r, ε) CPA se-
cure.

Solution. Suppose (PEnc, PDec) is not (t/r, ε) CPA secure, so that
there are messages m0,m1 and an algorithm A of complexity ≤ t/r such
that

|P[APEnc(PEnc(m0)) = 1]− P[APEnc(PEnc(m1)) = 1]| > ε (3)

Consider the oracle algorithm A′ that on input a ciphertext C and given
an oracle E, simulates A(C); every time A makes an oracle queries mi, A

′

simulates it with the outcome of the query E(mi, P (mi)), where E is the
oracle given to A′. Note that if P is computable in time r, and A runs in
time t/r, then A′ runs in time ≤ t. Expression (3) becomes

P[A′Enc(Enc(m0, P (m0))) = 1]− P[AEnc(Enc(m1, P (m1))) = 1]| > ε

4

If P is deterministic, then the messages (m0, P (m0)) and (m1, P (m1)) and
the algorithm A′ contradict the (t, ε) CPA security of (Enc,Dec). If P ()
is probabilistic, we can use the same averaging trick we used in part (a).

(c) If (Enc,Dec) is (t, ε) CCA secure, then (PEnc, PDec) is (t/O(r), ε) CCA
secure.

Solution. Suppose (PEnc, PDec) is not (t/O(r), ε) CCA secure, so that
there are messages m0,m1 and an algorithm A of complexity ≤ t/O(r)
such that

|P[APEnc,PDec(PEnc(m0)) = 1]−P[APEnc,PDec(PEnc(m1)) = 1]| > ε (4)

Consider the oracle algorithm A′ that on input a ciphertext C and given
oracle E,D, simulates A(C) as follows:

• every time A makes an oracle queries mi to PEnc, A′ simulates it
with the outcome of the query E(mi, P (mi)), where E is the first
oracle given to A′;

• every time A makes an oracle query Ci to PDec, A′ simulates it by
querying Ci into its second oracle D, receiving a pair (mi, Pi) as an
answer, and it continues the simulation as if mi had been the query
returned by PDec to A.

Note that if P is computable in time r, and A runs in time t/O(r), then
A′ runs in time ≤ t. Expression (4) becomes

P[A′Enc,Dec(Enc(m0, P (m0))) = 1]−P[AEnc,Dec(Enc(m1, P (m1))) = 1]| > ε

If P is deterministic, then the messages (m0, P (m0)) and (m1, P (m1)) and
the algorithm A′ contradict the (t, ε) CPA security of (Enc,Dec). If P ()
is probabilistic, we can use the same averaging trick we used in parts (a)
and (b).

5

