Solutions to Problem Set 2

1. Suppose that $F: \{0,1\}^k \times \{0,1\}^m \to \{0,1\}^m$ is a (t,ϵ) secure pseudorandom function.

Consider the following randomized MAC scheme (we shall assume for simplicity that m is a multiple of 3 and the scheme is defined only for messages whose length is a multiple of m/3 and is at most $\frac{m}{3} \cdot 2^{m/3-1}$):

- Tag(K, M)
 - divide M into blocks M_1, \ldots, M_ℓ of length m/3
 - pick a random $r \in \{0, 1\}^{m/3}$
 - return $(r, F_K(r, 0, 1, M_1), F_K(r, 0, 2, M_2), \dots, F_K(r, 1, \ell, M_\ell))$
- $Verify(K, M, (r, f_1, \ldots, f_\ell))$
 - divide M into blocks M_1, \ldots, M_ℓ of length m/3
 - check that for every $i \in \{1, \ldots, \ell 1\}$ we have $f_i = F_K(r, 0, i, M_i)$ and that we have $f_\ell = F_K(r, 1, \ell, M_\ell)$.

Show that this scheme is $(t/O(L), \epsilon + t^2 \cdot 2^{-m/3} + 2^{-m})$ -secure, where L is an upper bound to the length of the messages that we are going to authenticate.

Solution. We repeat the analysis we did in Section 3 of Lecture 7. The only thing that changes is, at the very end, the second case of the case analysis.

Let A be an algorithm running in time t' = t/O(L) and mounting a chosen message attack which is able to forge the MAC scheme with probability δ . Consider the MAC $\overline{T}, \overline{V}$ which is identical to the scheme described above except that it uses a purely random function instead of a pseudorandom function. Let A' be the algorithm that given a function oracle F simulates A and simulates every authentication query made by A by running the above Tag algorithm with the oracle F instead of the pseudorandom function. At the end, A' outputs 1 if and only if the simulation of A has produced a valid forgery. Note that A' runs in time $\leq t' \cdot L < t$, and so we must have

$$|\mathop{\mathbb{P}}_{K}[A'^{F_{K}()}()=1] - \mathop{\mathbb{P}}_{R:\{0,1\}^{m} \to \{0,1\}^{m}}[A'^{R()}()=1]| \leq \epsilon$$

because of the pseudorandomness of F_K .

This implies that

$$\mathbb{P}_{R}[A^{\prime R}()=1] = \mathbb{P}_{R}[A^{\overline{T},\overline{V}} \text{ outputs a forged MAC for } \overline{T},\overline{R}] \ge \delta - \epsilon$$

It remains to show that the probability that an algorithm A of running time $t' \leq t$ can produce a forgery for $(\overline{T}, \overline{V})$ is at most $t^2 \cdot 2^{-m/3} + 2^{-m}$.

We may assume that A never queries the Tag oracle twice on the same message. Let FORGE be the event that A finds a valid forgery for $\overline{T}, \overline{V}$. Consider the event REP that, during the execution of A, the random strings r used by the tagging algorithm are not all different. Note that A can query messages of total length at most t (because it runs in total time at most t), and so

$$\mathop{\mathbb{P}}_{R}[REP] \leq \frac{t^2}{2^{m/3}}$$

Now, consider what happens when we have $FORGE \land \neg REP$, that is, A'^R , simulating $A^{\overline{T},\overline{V}}$, uses different random strings r in each simulated invocation of \overline{T} , and it produces a valid forgery (r, T_1, \ldots, T_ℓ) of a new message (M_1, \ldots, M_ℓ) at the end. We claim that, in such a case, A' correctly guesses the value of Rat an input for which R() had not been evaluated before. Once we prove the claim, we immediately get

$$\mathbb{P}[FORGE \land \neg REP] \leq \frac{1}{2^m}$$

and so

$$\mathbb{P}_{R}[FORGE] \leq \mathbb{P}_{R}[FORGE \land \neg REP] + \mathbb{P}_{R}[REP] \leq \frac{t^{2}}{2^{m/3}} + \frac{1}{2^{m}}$$

as needed.

It remains to Prove the claim. Call M^1, \ldots, M^q the messages that A' authenticates with \overline{T} , and let M be the forgery at the end. Let r^1, \ldots, r^q, r be the random strings used in the tagging of M^1, \ldots, M^q, M , respectively. We consider two cases:

- (a) If r is different from all the r^i , then the first block T_1 in the forged tag (r, T_1, \ldots, T_ℓ) of M contains the value $R(r, 0, 1, M_1)$ which was never queried before to the R() oracle.
- (b) If r is equal to some of the r^j , then it can be equal to exactly one r^j , because the random strings r^j are different from each other. (Recall that we are considering a computation of A' that satisfied the event $FORGE \land \neg REP$.)

Now compare M with M^j . If M and M^j have the same length (measured as number of blocks of length m/3 each) ℓ , then when we write $M = M_1, \ldots, M_\ell$ and $M^j = M_1^j, \ldots, M_\ell^j$, there must be a block i such that $M_i \neq M_i^j$. (Otherwise we would have $M = M^j$ which cannot be because we are considering a case that satisfied the event *FORGE*.) Then the block T_i in the forget tag of M is the correct evaluation of R() at a point that had not been queried before.

Finally, if M and M^j have different lengths, let ℓ' be the shortest of the two lengths, and observe that $T_{\ell'}$ is the correct evaluation of R() at a point that had not been queried before.

- 2. Fix a randomized algorithm P (for "padding") that on input a string in $\{0, 1\}^m$ runs in time $\leq r$ and outputs another string in $\{0, 1\}^m$. Let (Enc, Dec) be an encryption scheme that encrypts blocks of length 2m, and cosider the modified encryption scheme (*PEnc*, *PDec*) defined so that a message M is first padded by appending P(M) and then it is encrypted with *Enc*:
 - PEnc(K, M) := Enc(K, (M, P(M)))'
 - PDenc(K, C): - $(M_1, M_2) := Dec(K, C)$ - return M_1

Prove that

(a) If (Enc, Dec) is (t, ϵ) -message indistinguishable, then (PEnc, PDec) is (t, ϵ) -message indistinguishable.

[Hint: you may find it easier to first argue the case in which P is deterministic.]

Solution. Suppose (PEnc, PDec) is not (t, ϵ) message indistinguishable, so that there are messages m_0, m_1 and an algorithm A of complexity $\leq t$ such that

$$|\mathbb{P}[A(PEnc(m_0)) = 1] - \mathbb{P}[A(PEnc(m_1)) = 1]| > \epsilon$$

This is equivalent to

$$|\mathbb{P}[A(Enc(m_0, P(m_0))) = 1] - \mathbb{P}[A(Enc(m_1, P(m_1))) = 1]| > \epsilon$$

If P() is deterministic, then the algorithm A and the plaintexts $(m_0, P(m_0))$ and $(m_1, P(m_1))$ contradict the (t, ϵ) message indistinguishability of (Enc, Dec). If P() is probabilistic, then we can write $P_r(m)$ for the output of P() when taking the input m and using internal randomness r. Then we have

$$|\mathbb{P}[A(Enc(m_0, P_r(m_0))) = 1] - \mathbb{P}[A(Enc(m_1, P_r(m_1))) = 1]| > \epsilon \quad (1)$$

where the probability is over the randomness of Enc and over the random choice of r.

We can rewrite (1) as

$$\left| \mathbb{E}_{r}(\mathbb{P}[A(Enc(m_{0}, P_{r}(m_{0}))) = 1] - \mathbb{P}[A(Enc(m_{1}, P_{r}(m_{1}))) = 1]) \right| > \epsilon \quad (2)$$

and, using the triangle inequality,

$$\mathbb{E}_{r} |\mathbb{P}[A(Enc(m_{0}, P_{r}(m_{0}))) = 1] - \mathbb{P}[A(Enc(m_{1}, P_{r}(m_{1}))) = 1]| > \epsilon$$

so that there must exist a particular choice of r, say r_0 such that

$$|\mathbb{P}[A(Enc(m_0, P_{r_0}(m_0))) = 1] - \mathbb{P}[A(Enc(m_1, P_{r_0}(m_1))) = 1]| > \epsilon$$

and so the algorithm A and the messages $(m_0, P_{r_0}(m_0))$ contradict the (t, ϵ) message indistinguishability of (Enc, Dec).

(b) If (Enc, Dec) is (t, ϵ) CPA secure, then (PEnc, PDec) is $(t/r, \epsilon)$ CPA secure.

Solution. Suppose (PEnc, PDec) is not $(t/r, \epsilon)$ CPA secure, so that there are messages m_0, m_1 and an algorithm A of complexity $\leq t/r$ such that

$$\left| \mathbb{P}[A^{PEnc}(PEnc(m_0)) = 1] - \mathbb{P}[A^{PEnc}(PEnc(m_1)) = 1] \right| > \epsilon \qquad (3)$$

Consider the oracle algorithm A' that on input a ciphertext C and given an oracle E, simulates A(C); every time A makes an oracle queries m_i , A'simulates it with the outcome of the query $E(m_i, P(m_i))$, where E is the oracle given to A'. Note that if P is computable in time r, and A runs in time t/r, then A' runs in time $\leq t$. Expression (3) becomes

$$\mathbb{P}[A^{\prime Enc}(Enc(m_0, P(m_0))) = 1] - \mathbb{P}[A^{Enc}(Enc(m_1, P(m_1))) = 1]| > \epsilon$$

If P is deterministic, then the messages $(m_0, P(m_0))$ and $(m_1, P(m_1))$ and the algorithm A' contradict the (t, ϵ) CPA security of (Enc, Dec). If P()is probabilistic, we can use the same averaging trick we used in part (a).

(c) If (Enc, Dec) is (t, ϵ) CCA secure, then (PEnc, PDec) is $(t/O(r), \epsilon)$ CCA secure.

Solution. Suppose (PEnc, PDec) is not $(t/O(r), \epsilon)$ CCA secure, so that there are messages m_0, m_1 and an algorithm A of complexity $\leq t/O(r)$ such that

$$|\mathbb{P}[A^{PEnc,PDec}(PEnc(m_0)) = 1] - \mathbb{P}[A^{PEnc,PDec}(PEnc(m_1)) = 1]| > \epsilon \quad (4)$$

Consider the oracle algorithm A' that on input a ciphertext C and given oracle E, D, simulates A(C) as follows:

- every time A makes an oracle queries m_i to PEnc, A' simulates it with the outcome of the query $E(m_i, P(m_i))$, where E is the first oracle given to A';
- every time A makes an oracle query C_i to PDec, A' simulates it by querying C_i into its second oracle D, receiving a pair (m_i, P_i) as an answer, and it continues the simulation as if m_i had been the query returned by PDec to A.

Note that if P is computable in time r, and A runs in time t/O(r), then A' runs in time $\leq t$. Expression (4) becomes

$$\mathbb{P}[A^{'Enc,Dec}(Enc(m_0, P(m_0))) = 1] - \mathbb{P}[A^{Enc,Dec}(Enc(m_1, P(m_1))) = 1]| > \epsilon$$

If P is deterministic, then the messages $(m_0, P(m_0))$ and $(m_1, P(m_1))$ and the algorithm A' contradict the (t, ϵ) CPA security of (Enc, Dec). If P()is probabilistic, we can use the same averaging trick we used in parts (a) and (b).