Problem Set 2

1. Suppose that $F: \{0,1\}^k \times \{0,1\}^m \to \{0,1\}^m$ is a (t,ϵ) secure pseudorandom function.

Consider the following randomized MAC scheme (we shall assume for simplicity that m is a multiple of 3 and the scheme is defined only for messages whose length is a multiple of m/3 and is at most $\frac{m}{3} \cdot 2^{m/3-1}$):

- Tag(K, M)
 - divide M into blocks M_1, \ldots, M_ℓ of length m/3
 - pick a random $r \in \{0,1\}^{m/3}$
 - return $(r, F_K(r, 0, 1, M_1), F_K(r, 0, 2, M_2), \dots, F_K(r, 1, \ell, M_\ell))$
- $Verify(K, M, (r, f_1, \ldots, f_\ell))$
 - divide M into blocks M_1, \ldots, M_ℓ of length m/3
 - check that for every $i \in \{1, \ldots, \ell 1\}$ we have $f_i = F_K(r, 0, i, M_i)$ and that we have $f_\ell = F_K(r, 1, \ell, M_\ell)$.

Show that this scheme is $(t/O(L), \epsilon + t^2 \cdot 2^{-m/3} + 2^{-m})$ -secure, where L is an upper bound to the length of the messages that we are going to authenticate.

- 2. Fix a randomized algorithm P (for "padding") that on input a string in $\{0, 1\}^m$ runs in time $\leq r$ and outputs another string in $\{0, 1\}^m$. Let (Enc, Dec) be an encryption scheme that encrypts blocks of length 2m, and cosider the modified encryption scheme (PEnc, PDec) defined so that a message M is first padded by appending P(M) and then it is encrypted with Enc:
 - PEnc(K, M) := Enc(K, (M, P(M)))'
 - PDenc(K, C):
 - $(M_1, M_2) := Dec(K, C)$ - return M_1

Prove that

(a) If (Enc, Dec) is (t, ϵ) -semantically secure, then (PEnc, PDec) is (t, ϵ) -semantically secure.

[Hint: you may find it easier to first argue the case in which P is deterministic.]

- (b) If (Enc, Dec) is (t, ϵ) CPA secure, then (PEnc, PDec) is $(t/r, \epsilon)$ CPA secure.
- (c) If (Enc, Dec) is (t, ϵ) CCA secure, then (PEnc, PDec) is $(t/O(r), \epsilon)$ CCA secure.