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Solutions to Problem Set 1

1. Let G : {0, 1}k → {0, 1}m be a (t, ε)-secure pseudoradom generator with m ≥
k + 1 and ε ≤ 1

2
.

Prove that

t

ε
≤ 2k ·O(m)

Solution

First, we need to unpack the meaning of the statement that we have to prove.

We need to show that there is an upper bound U = O(m2k) such that, for
every t, ε, if G is (t, ε) secure then t/ε ≤ U . This is equivalent to showing that,
for every ε, if t > εU then G is not (t, ε) secure. In turn, this is equivalent to
showing that, for every ε, G is not (1 + εU, ε) secure. That is, for every ε, we
need to find an algorithm of complexity at most 1 + εU = O(εm2k) that has
distinguishing probability at least ε for the generator.

Now the solution is very simple. Let the algorithm A keep a look-up table
containing 2ε2k distinct possible outputs of the generator. (If the generator
has fewer than so many distinct possible outputs, then the look-up table just
contains all possible outputs.) On input y ∈ {0, 1}m, the algorithm outputs 1
if y is in the table, and 0 otherwise.

So we have

P
x∈{0,1}k

[A(G(x)) = 1] ≥ 2ε2k

2k
≥ 2ε

because every possible output of G occurs with probability at least 1/2k.

And we have

P
y∈{0,1}m

[A(y) = 1] ≤ 2ε2k

2m
≤ ε

because m ≥ k + 1.

Thus
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| P
x∈{0,1}k

[A(G(x)) = 1]− P
y∈{0,1}m

[A(y) = 1]| ≥ ε

the algorithm has distinguishing probability ε and complexity O(m · 2k) (dom-
inated by the size of the look-up table) as required.

2. Let F : {0, 1}k × {0, 1}m → {0, 1}m be a (t, ε)-secure pseudorandom function
with k = m, ε ≤ 1/2, and t > 3m

Prove that

t

ε
≤ 2k ·O(m)

Solution

If F is a (t, ε)-secure pseudorandom function, then the mapping

G(K) = FK(0, · · · , 0), FK(0, · · · , 1)

is a (t− 2m, ε) pseudorandom generator mapping m bits into 2m bits.

(An algorithm A of complexity t′ that has distinguishing probability ε for G can
easily be converted into an algorithm of complexity t+2m that has distinguish-
ing probability ε for F : just query F at the points (0, · · · , 0) and (0, · · · , 1) and
then pass the result to A.)

From the previous solution we know

t− 2m

ε
≤ O(m2k)

and from our assumption t ≤ 3 · (t− 2m), so

t

ε
≤ O(m2k)

3. Problem 3.7 in Katz-Lindell: assuming the existence of a CPA-secure cryptosys-
tem (Enc,Dec), show that there is a cryptosystem (Enc′, Dec′) that satisfies
plain security for multiple encryptions but that is not CPA secure.

[Hint: insert a kind of “backdoor” in (Enc′, Dec′) which can be exploited in
a CPA attack but that is exponentially unlikely to be exploitable in the plain
multiple encryption model.]
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Solution

Let Enc : {0, 1}k × {0, 1}m → {0, 1}c and assume c = `m is a multiple of m.
(Otherwise pad the output of Enc with zeroes to ensure this condition; this
does not affect CPA-security.)

The encryption Enc′ takes in input a plaintext of length c. If it happens to be a
valid encryption of the all-zero string 0 using Enc, then Enc′ allows itself to be
broken, and outputs the secret key as part of the encryption of the plaintext. In
all other cases, Enc′ parses its input as ` blocks of length m, and then encodes
each block using Enc.

In a CPA attack, we can find out the encryption of 0, and force the first case
to happen, thus finding out the key and breaking the system. In the plain
security model with no encryption oracle, however, we are almost always in the
second case (otherwise it would be easy to recognize the encryption of 0), and
the security for multiple encryptions of Enc′ follows from the security of Enc.

In more detail, we have Enc′ : {0, 1}k×{0, 1}c → {0, 1}1+`·c and Dec′ : {0, 1}k×
{0, 1}1+`·m → {0, 1}c defined as follows:

• Enc′(K,M):

– If Dec(K,M) = 0 · · · 0, then output (0, K,M) followed by as many
zeroes as needed to get an output of length 1 + ` · c;

– Else, parse M as (M1, . . . ,M`), where each block has length m, and
output (1, Enc(K,M1), . . . , Enc(K,M`).

• Dec′(K, (b, C))

– If the first bit b of the ciphertext is 0, then parse C as (K,M, 0 · · · 0)
and output M

– Else parse C as C1, . . . , C` and output Dec(K,C1), . . . , Dec(K,C`).

It is easy to see that (Enc′, Dec′) suffers a total break under a CPA attack,
meaning that with an encryption oracle for Enc′(K, ·) it is easy to reconstruct
the key K. We first ask the encryption oracle for an encryption of 0c (by which
we mean the string made of a sequence of c zeroes). Then we either get back
the key (because by an amazing coincidence, Dec(K, 0c) happened to be equal
to 0m), or we get back (1, C1, . . . , C`), where each Ci is an encryption of 0m

using Enc(K, ·). Now we give C1 to the encryption oracle, and we get back the
key.

It remains to show that (Enc′, Dec′) is secure for multiple encryptions.
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Fix two sequences of messages M1, . . . ,Mt and M ′
1, . . . ,M

′
t , fix an efficient al-

gorithm A, and consider the probabilities

P
K

[A(Enc′(K,M1), . . . , Enc
′(K,Mt) = 1] (1)

P
K

[A(Enc′(K,M ′
1), . . . , Enc

′(K,M ′
t) = 1] (2)

We need to show that (1) ≈ (2). Let Enc′′ be the encryption algorithm that
always behaves like the “else” branch of the computation of Enc′. That is,
Enc′′(M) parses its input as blocks of length m and then uses Enc() on each
block. Since Enc is CPA secure, and so also secure for multiple encryptions, we
have

P
K

[A(Enc′′(K,M1), . . . , Enc
′′(K,Mt) = 1] ≈ P

K
[A(Enc′′(K,M ′

1), . . . , Enc
′′(K,M ′

t) = 1]

(3)

finally, we argue that for every M , PK [Enc′(K,M) 6= Enc′′(K,M)] is very
small. (And now we are done, because this means that (1) is approximately the
left-hand side of (3), and that (2) is approximately the right-hand side of (3),
so that (1) is approximately equal to (2).

Suppose there is a message such that PK [Enc′(K,M) 6= Enc′′(K,M)] ≥ ε. This
means that PK [Enc(K, 0m) = M ] ≥ ε. On the other hand, there must exist a
plaintext P ∈ {0, 1}m such that PK [Enc(K,P ) = M ] ≤ 2−m and so we would
have that

| P
K

[Enc(K,P ) = M ]− P
K

[Enc(K, 0m) = M ]| ≥ ε− 2−m

which would violate the message indistinguishability of Enc.

4. Suppose that F is a pseudorandom permutation F : {0, 1}k×{0, 1}m → {0, 1}m.
Consider the following encryption scheme:

• Enc(K,M): pick a random string r, output (FK(r), r ⊕M)

• Dec(K,C0, C1) := IK(C0)⊕ C1

Is it CPA secure?
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Solution

It is CPA-secure.

Let Enc be the variant of Enc in which a truly random permutation R is used
instead of FK .

Let A be an algorithm of complexity t mounting a CPA, and M,M ′ be two
messages.

A gets in input a cyphertext (C,C ′) and then, adaptively, generate plaintexts
M1, . . . ,Mt and passes them to the encryption oracle, receiving ciphertexts
(C1, C

′
1), . . . , (Ct, C

′
t). Let REP be the event that C,C1, Ct are all different.

When given Enc as an encryption oracle, then for every (C,C ′) the probabil-

ity that the event REP happens in the computation of AEnc(C,C ′) is at most
t2 · 2−m.

We can show that

P[AEnc(Enc(M)) = 1|¬REP ] = P[AEnc(Enc(M ′)) = 1|¬REP ]

and so

|P[AEnc(Enc(M)) = 1]− P[AEnc(Enc(M ′)) = 1]| ≤ P[REP ] ≤ t2

2m

Finally, if F is a (O(tm), ε) secure pseudorandom permutation, we must have

|P[AEnc(Enc(M)) = 1]− P[AEnc(Enc(M)) = 1]| ≤ ε

and

|P[AEnc(Enc(M ′)) = 1]− P[AEnc(Enc(M ′)) = 1]| ≤ ε

so

|P[AEnc(Enc(M)) = 1]− P[AEnc(Enc(M ′)) = 1]| ≤ 2ε+
t2

2m
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