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Notes on Discrete Probability

The following notes cover, mostly without proofs, some basic notions and results of
discrete probability. They were written for an undergraduate class, so you may find
them a bit slow.

1 Basic Definitions

In cryptography we typically want to prove that an adversary that tries to break a
certain protocol has only minuscule (technically, we say “negligible”) probability of
succeeding. In order to prove such results, we need some formalism to talk about the
probability that certain events happen, and also some techniques to make computa-
tions about such probabilities.

In order to model a probabilistic system we are interested in, we have to define
a sample space and a probability distribution. The sample space is the set of all
possible elementary events, i.e. things that can happen. A probability distribution is
a function that assigns a non-negative number to each elementary event, this number
being the probability that the event happen. We want probabilities to sum to 1.
Formally,

Definition 1 For a finite sample space Ω and a function P : Ω → R, we say that P
is a probability distribution if

1. P(a) ≥ 0 for every a ∈ Ω;

2.
∑

a∈Ω P(a) = 1.

For example, if we want to model a sequence of three coin flips, our sample space
will be {Head, Tail}3 (or, equivalently, {0, 1}3) and the probability distribution will
assign 1/8 to each element of the sample space (since each outcome is equally likely).

If we model an algorithm that first chooses at random a number in the range 1, . . . , 10200

and then does some computation, our sample space will be the set {1, 2, . . . , 10200},
and each element of the sample space will have probability 1/10200.

We will always restrict ourselves to finite sample spaces, so we will not remark it
each time. Discrete probability is the restriction of probability theory to finite sample
spaces. Things are much more complicated when the sample space can be infinite.
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An event is a subset A ⊆ Ω of the sample space. The probability of an event is defined
in the intuitive way

P[A] =
∑
a∈A

P(a)

(Conventially, we set P[∅] = 0.)

We use square brackets to remind us that now we are considering a different function:
while P(·) is a function whose inputs are elements of the sample space, P[·] is a
function whose inputs are subsets of the sample space.

For example, suppose that we want to ask what is the probability that, when flipping
three coins, we get two heads. Then Ω = {0, 1}3, P(a) = 1/8 for every a ∈ Ω,
we define A as the subset of {0, 1}3 containing strings with exactly two 1s, and we
ask what is P[A]. As it turns out, A has 3 elements, that is 011, 101, 110, and so
P[A] = 3/8. Very often, as in this example, computing the probability of an event
reduces to counting the number of elements of a set.

When P(·) assigns the same value 1/|Ω| to all the elements of the sample space, then
it is called the uniform distribution over Ω.

The following distribution arises very often, and it is good to know about it. Consider
the situation where you flip n biased coins, and the probability that each coin turns
out head is p (where 0 ≤ p ≤ 1 is some fixed parameter). The outcome of each flip
is independent of all the other outcomes. Then the sample space is Ω = {0, 1}n,
identifying heads with 1s; the probability distribution is

P(a) = pk(1− p)n−k where k is the number of 1s in a

When p = 1/2 then we have the uniform distribution over {0, 1}n. If p = 0 then all a
have probability zero, except 00 · · · 0, which has probability one. (Similarly if p = 1.)
The other cases are more interesting.

These distributions are called Bernoulli distributions or binomial distributions.

If we have a binomial distribution with parameter p, and we ask what is the probability
of the event Ak that we get a string with k ones, then such a probability is

P[Ak] =

(
n

k

)
pk(1− p)n−k

2 Random Variables and Expectation

Very often, when studying a probabilistic system (say, a randomized algorithm) we are
interested in some values that depend on the elementary event that takes place. For
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example, when we play dice, we are interested in the probabilistic system where two
dice are rolled, and the sample space is {1, 2, . . . , 6}2, with the uniform distribution
over the 36 elements of the sample space, and we are interested in the sum of the
outcomes of the two dice. Similarly, when we study a randomized algorithm that
makes some internal random choices, we are interested in the running time of the
algorithm, or in its output. The notion of a random variable gives a tool to formalize
questions of this kind.

A random variable X is a function X : Ω → V where Ω is a sample space and V is
some arbitrary set (V is called the range of the random variable). One should think
of a random variable as an algorithm that on input an elementary event returns some
output. Typically, V will either be a subset of the set of real numbers or of the set
of binary strings of a certain length.

Let Ω be a sample space, P a probability distribution on Ω and X be a random
variable on Ω. If v is in the range of X, then the expression X = v denotes an event,
namely the event {a ∈ Ω : X(a) = v}, and thus the expression P[X = v] is well
defined, and it is something interesting to try to compute.

Let’s look at the example of dice. In that case, Ω = {1, . . . , 6}2, for every (a, b) ∈ Ω
we have P(a, b) = 1/36. Let us define X as the random variable that associates a+ b
to an elementary event (a, b). Then the range of X is {2, 3, . . . , 12}. For every element
of the range we can compute the probability that X take such value. By counting
the number of elementary events in each event we get

P[X = 2] = 1/36 , P[X = 3] = 2/36 , P[X = 4] = 3/36

P[X = 5] = 4/36 , P[X = 6] = 5/36 , P[X = 7] = 6/36

and the other probabilities can be computed by observing that

P[X = v] = P[X = 14− v]

It is possible to define more than one random variable over the same sample space,
and consider expressions more complicated than equalities.

When the range of a random variable X is a subset of the real numbers (e.g. if X
is the running time of an algorithm — in which case the range is even a subset of
the integers) then we can define the expectation of X. The expectation of a random
variable is a number defined as follows.

E[X] =
∑
v∈V

vP[X = v]

where V is the range of X. We can assume without loss of generality that V is finite,
so that the expression above is well defined (if it were an infinite series, it could
diverge or even be undefined).
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Expectations can be understood in terms of betting. Say that I am playing some
game where I have a probability 2/3 of winning, a probability 1/6 of losing and a
probability 1/6 of a draw. If I win, I win $ 1; if I lose I lose $ 2; if there is a draw I
do not win or lose anything. We can model this situation by having a sample space
{L,D,W} with probabilities defined as above, and a random variable X that specifies
my wins/losses. Specifically X(L) = −2, X(D) = 0 and X(W ) = 1. The expectation
of X is

E[X] =
1

6
· (−2) +

1

6
· 0 +

2

3
· 1 =

1

3

so if I play this game I “expect” to win $ 1/3. The game is more than fair on my
side.

When we analyze a randomized algorithm, the running time of the algorithm typically
depends on its internal random choices. A complete analysis of the algorithm would
be a specification of the running time of the algorithm for each possible sequence of
internal choices. This is clearly impractical. If we can at least analyse the expected
running time of the algorithm, then this will be just a single value, and it will give
useful information about the typical behavior of the algorithm (see Section 4 below).

Here is a very useful property of expectation.

Theorem 2 (Linearity of Expectation) Let X be a random variable and a be
real; then E[aX] = aE[X]. Let X1, . . . , Xn be random variables over the same sample
space; then E[X1 + · · ·+Xn] = E[X1] + · · ·E[Xn].

Example 3 Consider the following question: if we flip a coin n times, what is the
expected number of heads? If we try to answer this question without using the linearity
of expectation we have to do a lot of work. Define Ω = {0, 1}n and let P be the uniform
distribution; let X be the random variable such that X(a) = the number of 1s in a ∈ Ω.
Then we have, as a special case of Bernoulli distribution, that

P[X = k] =

(
n

k

)
2−n

In order to compute the average of X, we have to compute the sum

n∑
k=0

(
n

k

)
k2−n (1)

which requires quite a bit of ingenuity. We now show how to solve Expression (1) just
to see how much work can be saved by using the linearity of expectation. An inspection
of Expression (1) shows that it looks a bit like the expressions that one gets out of the
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Binomial Theorem, except for the presence of k. In fact it looks pretty much like the
derivative of an expression coming from the Binomial Theorem (this is a standard
trick). Consider (1/2 + x)n (we have in mind to substitute x = 1/2 at some later
point), then we have (

1

2
+ x

)n
=

n∑
k=0

(
n

k

)
2−(n−k)xk

and then
d((1/2 + x)n)

dx
=

n∑
k=0

(
n

k

)
2−(n−k)kxk−1

but also
d((1/2 + x)n)

dx
= n

(
1

2
+ x

)n−1

and putting together

n∑
k=0

(
n

k

)
2−(n−k)kxk−1 = n

(
1

2
+ x

)n−1

.

Now we substitute x = 1/2, and we have

n∑
k=0

(
n

k

)
2−(n−k)k2−(k−1) = n .

Here we are: dividing by 2 we get

n∑
k=0

(
n

k

)
k2−n =

n

2
.

So much for the definition of average. Here is a better route: we can view X as the
sum of n random variables X1, . . . , Xn, where Xi is 1 if the i-th coin flip is 1 and Xi

is 0 otherwise. Clearly, for every i, E[Xi] = 1
2
· 0 + 1

2
· 1 = 1

2
, and so

E[X] = E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn] =
n

2
.

3 Independence

3.1 Conditioning and Mutual Independence

Suppose I toss two coins, without letting you see the outcome, and I tell you that
at least one of the coins came up heads, what is the probability that both coin are
heads?
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In order to answer to this question (I will give it away that the answer is 1/3), one
needs some tools to reason about the probability that a certain event holds given (or
conditioned on the fact) that a certain other event holds.

Fix a sample space Ω and a probability distribution P. Suppose we are given that a
certain event A ⊆ Ω holds. Then the probability of an elementary event a given the
fact that A holds (written P(a|A)) is defined as follows: if a 6∈ A, then it is impossible
that a holds, and so P(a|A) = 0; otherwise, if a ∈ A, then P(a|A) has a value that is
proportional to P(a). One realizes that the factor of proportionality has to be 1/P[A],
so that probabilities sum to 1 again. Our definition of conditional probability of an
elementary event is then

P(a|A) =

{
0 If a 6∈ A

P(a)
P[A]

Otherwise

The above formula already lets us solve the question asked at the beginning of this
section. Notice that probabilities conditioned on an event A such that P[A] = 0 are
undefined.

Then we extend the definition to arbitrary events, and we say that for an event B

P[B|A] =
∑
b∈B

P(b|A)

One should check that the following (more standard) definition is equivalent

P[B|A] =
P[A ∩B]

P[A]

Definition 4 Two events A and B are independent if

P[A ∩B] = P[A] · P[B]

If A and B are independent, and P[A] > 0, then we have P[B|A] = P[B]. Similarly, if
A and B are independent, and P[B] > 0, then we have P[A|B] = P[A]. This motivates
the use of the term “independence.” If A and B are independent, then whether A
holds or not is not influenced by the knowledge that B holds or not.

When we have several events, we can define a generalized notion of independence.

Definition 5 Let A1, . . . , An ⊆ Ω be events is a sample space Ω; we say that such
events are mutually independent if for every subset of indices I ⊆ {1, . . . n}, I 6= ∅,
we have
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P[
⋂
i∈I

Ai] =
∏
i∈I

P[Ai]

All this stuff was just to prepare for the definition of independence for random vari-
ables, which is a very important and useful notion.

Definition 6 If X and Y are random variables over the same sample space, then we
say that X and Y are independent if for any two values v, w, the event (X = v) and
(Y = w) are independent.

Therefore, if X and Y are independent, knowing the value of X, no matter which
value it is, does not tell us noting about the distribution of Y (and vice versa).

Theorem 7 If X and Y are independent, then E[XY ] = E[X]E[Y ].

This generalizes to several random variables

Definition 8 Let X1, . . . , Xn be random variables over the same sample space, then
we say that they are mutually independent if for any sequence of values v1, . . . , vn,
the events (X1 = v1), . . . , (Xn = vn) are mutually independent.

Theorem 9 If X1, . . . , Xn are mutually independent random variables, then

E[X1 ·X2 · · ·Xn] = E[X1] · E[X2] · · ·E[Xn]

3.2 Pairwise Independence

It is also possible to define a weaker notion of independence.

Definition 10 Let X1, . . . , Xn be random variables over the same sample space, then
we say that they are pairwise independent if for every i, j ∈ {1, . . . , n}, i 6= j, we have
that Xi and Xj are independent.

It is important to note that a collection of random variables can be pairwise indepen-
dent without being mutually independent. (But a collection of mutually independent
random variables is always pairwise independent for a stronger reason).
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Example 11 Consider the following probabilistic system: we toss 2 coins, and we let
the random vaiables X, Y, Z be, respectively, the outcome of the first coin, the outcome
of the second coin, and the XOR of the outcomes of the two coins (as usual, we inter-
pret outcomes of coins as 0/1 values). Then X, Y, Z are not mutually independent,
for example

P[Z = 0|X = 0, Y = 0] = 1

while

P[Z = 0] = 1/2

in fact, intuitively, since the value of Z is totally determined by the values of X
and Y , the three variables cannot be mutually independent. On the other hand, we
will now show that X, Y, Z are pairwise independent. By definition, X and Y are
independent, so we have to focus of X and Z and on Y and Z. Let us prove that X
and Z are independent (the proof for Y and Z is identical). We have to show that
for each choice of two values v, w ∈ {0, 1}, we have

P[X = v, Z = w] = P[X = v]P[Z = w] =
1

4

and this is true, since, in order to have Z = w and X = v, we must have Y = w⊕ v,
and the event that X = v and Y = w ⊕ v happens with probability 1/4.

Let us see two additional, more involved, examples.

Example 12 Suppose we flip k coins, whose outcomes be a1, . . . , an ∈ {0, 1}k. Then
for every non-empty subset I ⊆ {0, 1}k we define a random variable XI , whose value is⊕

i∈I ai. It is possible to show that {XI}I⊆{0,1}k,I 6=∅ is a pairwise independent collection
of random variables. Notice that we have 2k−1 random variables defined over a sample
space of only 2k points.

Example 13 Let p be a prime number; suppose we pick at random two elements
a, b ∈ zp — that is, our sample space is the set of pairs (a, b) ∈ zp × zp = Ω, and we
consider the uniform distribution over this sample space. For every z ∈ zp, we define
one random variable Xz whose value is az + b (mod p). Thus we have a collection
of p random variables. It is possible to show that such random variables are pairwise
independent.
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4 Deviation from the Expectation

4.1 Markov’s Inequality

Say that X is the random variable expressing the running time in seconds of an
algorithm on inputs of a certain size, and that we computed E[X] = 10. Since
this is the order of magnitude of the time that we expect to spend while running the
algorithm, it would be devastating if it happened that, say, X ≥ 1, 000, 000 (i.e. more
than 11 days) with large probability. However, we quickly realize that if E[X] = 10,
then it must be P[X ≥ 1, 000, 000] ≤ 1/100, 000, as otherwise the contribution to the
expectation of the only events where X ≥ 1, 000, 000 would already exceed the value
10. This reasoning can be generalized as follows.

Theorem 14 (Markov’s Inequality) If X is a non-negative random variable then

P[X ≥ k] ≤ E[X]

k

Sometimes the bound given by Markov’s inequality are extremely bad, but the bound
is as strong as possible if the only information that we have is the expectation of X.

For example, suppose that X counts the number of heads in a sequence of n coin
flips. Formally, Ω is {0, 1}n with the uniform distribution, and X is the number of
ones in the string. Then E[X] = n/2. Suppose we want to get an upper bound on
P[X ≥ n] using Markov. Then we get

P[X ≥ n] ≤ E[X]

n
=

1

2

This is ridiculous! The right value is 2−n, and the upper bound given by Markov’s
inequality is totally off, and it does not even depend on n.

However, consider now the experiment where we flip n coins that are glued together,
so that the only possible outcomes are n heads (with probability 1/2) and n tails
(with probability 1/2). Define X again as the number of heads. We still have that
E[X] = n/2, and we can apply Markov’s inequality as before to get

P[X ≥ n] ≤ E[X]

n
=

1

2

But, now, the above inequality is tight, becuase P[X ≥ n] is precisely 1/2.

The moral is that Markov’s inequality is very useful because it applies to every non-
negative random variables having a certain expectation, so we can use it without
having to study our random variable too much. On the other hand, the inequality
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will be accurate when applied to a random variable that typically deviates a lot from
its expectation (say, the number of heads that we get when we toss n glued coins)
and the inequality will be very bad when we apply it to a random variable that
is concentrated around its expectation (say, the number of heads that we get in n
independent coin tosses). In the latter case, if we want accurate estimations we have
to use more powerful methods. One such method is described below.

4.2 Variance

For a random variable X, the random variable

X ′ = |X − E[X]|
gives all the information that we need in order to decide whether X is likely to deviate
a lot from its expectation or not. All we need to do is to prove that X ′ is typically
small. However this idea does not lead us very far (analysing X ′ does not seem to be
any easier than analysing X).

Here is a better tool. Consider

(X − E[X])2

This is again a random variable that tells us how much X deviates from its expec-
tation. In particular, if the expectation of such an auxliary random variable is small,
then we expect X to be typically close to its expectation. The variance of X is defined
as

Var(X) = E[(X − E[X])2]

Here is an equivalent epxression (we use linearity of expectation in the derivation of
the final result):

Var(X) = E[(X − E[X])2]

= E[X2 − 2XE[X] + (E[X])2]

= E[X2]− 2E[XE[X]] + (E[X])2

= E[X2]− 2E[X]E[X] + (E[X])2

= E[X2]− (E[X])2

The variance is a useful notion for two reasons: it is often easy to compute and it
gives rise to sometimes strong estimations on the probability that a random variable
deviates from its expectation.
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Theorem 15 (Chebyshev’s Inequality)

P[|X − E[X]| ≥ k] ≤ Var(X)

k2

The proof uses Markov’s inequality and a bit of ingenuity.

P[|X − E[X]| ≥ k] = P[(X − E[X])2 ≥ k2]

≤ E[(X − E[X])2]

k2

=
Var(X)

k2

The nice idea is in the first step. The second step is just an application of Markov’s
inequality and the last step uses the definition of variance.

The value σ(X) =
√

Var(X) is called the standard deviation of X. One expects the
value of a random variable X to be around the interval E[X]±σ(X). We can restate
Chebyshev’s Inequality in terms of standard deviation

Theorem 16 (Chebyshev’s Inequality, Alternative Form)

P[|X − E[X]| ≥ c · σ(X)] ≤ 1

c2

Let Y be a random variable that is equal to 0 with probability 1/2 and to 1 with
probability 1/2. Then E[Y ] = 1/2, Y = Y 2, and

Var(Y ) = E[Y 2]− (E[Y ])2 =
1

2
− 1

4
=

1

4

Let X the random variable that counts the number of heads in a sequence of n
independent coin flips. We have seen that E[X] = n/2. Computing the variance
according to the definition would be painful. We are fortunate that the following
result holds.

Lemma 17 (Tools to Compute Variance)

1. Let X be a random variable, a, b be reals, then

Var(aX + b) = a2Var(X)
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2. Let X1, . . . , Xn be pairwise independent random variables on the same sample
space. Then

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+ Var(Xn)

Then we can view X as X1 + · · · + Xn where Xi are mutually independent random
variables such that for each i Xi takes value 1 with probability 1/2 and value 0 with
probability 1/2. As computed before, Var(Xi) = 1/4. Therefore Var(X) = n/4 and
the standard deviation is

√
n/2. This means that when we flip n coins we expect to

get about n±
√
n heads.

Let us test Chebyshev’s inequality on the same example of the previous subsection.
Let X be a random variable defined over Ω = {0, 1}n, where P is uniform, and
X counts the number of 1s in the elementary event: suppose we want to compute
P[X ≥ n]. As computed above, Var(X) = n/4, so

P[X ≥ n] ≤ P[|X − E[X]| ≥ n/2] ≤ 1

n

This is still much less than the correct value 2−n, but at least it is a value that
decreases with n. It is also possible to show that Chebyshev’s inequality is as strong
as possible given its assumption.

Let n = 2k − 1 for some integer k and let X1, . . . , Xn be the collection of pairwise
independent random variables as defined in Example 12. Let X = X1 + . . . + Xn.
Suppose we want to compute P[X = 0]. Since each Xi has variance 1/4, we have that
X has variance n/4, and so

P[X = 0] ≤ P[|X − E[X]| ≥ n/2] ≤ 1

n

which is almost the right value: the right value is 2−k = 1/(n+ 1).

A Appendix

A.1 Some Combinatorial Facts

Consider a set Ω with n elements. Ω has 2n subsets (including the empty set and Ω
itself).

For every 0 ≤ k ≤ n, Ω has
(
n
k

)
subsets of k elements. The symbol

(
n
k

)
is read “n

choose k” and is defined as
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(
n

k

)
=

n!

k!(n− k)!

Then we must have

n∑
k=0

(
n

k

)
= 2n (2)

which is a special case of the following result

Theorem 18 (Binomial Theorem) For every two reals a, b and non-negative in-
teger n,

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k

We can see that Equation (2) follows from the Binomial Theorem by simply substi-
tuting a = 1 and b = 1.

Sometimes we have to deal with summations of the form 1 + 1/2 + 1/3 + . . . + 1/n.
It’s good to know that

∑n
k=1 1/k ≈ lnn. More precisely

Theorem 19 limn→∞

Pn
k=1 1/k

lnn
= 1.

In particular,
∑n

k=1 1/k ≤ 1 + lnn for every n, and
∑n

k=1 1/k ≥ lnn for sufficiently
large n.

The following inequality is exceedingly useful in computing upper bounds of proba-
bilities of events:

1 + x ≤ ex (3)

This is easy to prove by looking at the Taylor series of ex:

ex = 1 + x+
1

2
x2 + . . .+

1

k!
xk + . . .

Observe that Equation (3) is true for every real x, not necessarily positive (but it
becomes trivial for x < −1).

Here is a typical application of Equation (3). We have a randomized algorithm that
has a probability ε over its internal coin tosses of succeeding in doing something (and
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when it succeeds, we notice that it does, say because the algorithm is trying to invert
a one-way function, and when it succeeds then we can check it efficiently); how many
times do we have to run the algorithm before we have probability at least 3/4 that
the algorithm succeeds?

The probability that it never succeeds in k runs is

(1− ε)k ≤ e−εk

If we choose k = 2/ε, the probability of k consecutive failures is less than e−2 < 1/4,
and so the probability of succeeding (at least once) is at least 3/4.

A.2 Examples of Analysis of Error Probability of Algorithms

Example 20 Suppose that we have an algorithm whose worst-case running time (on
inputs of a certain length) is bounded by a random variable T (whose sample space is
the set of random choices made by the algorithm). For concreteness, suppose that we
are considering the randomized algorithm that given a prime p and an element a ∈ Z∗p
decides whether a is a quadratic residue or not. Suppose that we are given t = E[T ]
but no additional information on the algorithm, and we would like to know how much
time we have to wait in oder to have a probability at least 1− 10−6 that the algorithm
terminates. If we only know E[T ], then we can just use Markov’s inequality and say
that

P[T ≥ kt] ≤ 1

k

and if we choose k = 106 we have that

P[T ≥ 106t] ≤ 10−6 .

However there is a much faster way of guaranteeing termination with high probability.
We let the program run for 2t time. There is a probability 1/2 that the algorithm will
stop before that time. If so we are happy. If not, we terminate the computation, and
start it over (in the second iteration, we let the algorithm use independent random
bits). If the second computation does not terminate within 2t time, we reset it once
more, and so on. Let T ′ be the random variable that gives the time taken by this
new version of the algorithm (with the stop and reset actions). Now we have that
the probability that we use more than 2kt time is equal to the probability that for k
consecutive (independent) times the algorithm takes more than 2t time. Each of these
events happen with probability at most 1/2, and so

P[T ′ ≥ 2kt] ≤ 2−k
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and if take k = 20, the probability is less than 10−6, and the time is only 40t rather
than 1, 000, 000t.

Suppose that t = t(n) is the average running time of our algorithm on inputs of
length n, and that we want to find another algorithm that finishes always in time
t′(n) and that reports a failure only with negligible probability, say with probability at
most n− logn. How large do we have choose t′, and what the new algorithm should be
like?

If we just put a timeout t′ on the original algorithm, then we can use Markov’s in-
equality to say that t′(n) = nlognt(n) will suffice, but now t′ is not polynomial in
n (even if t was). Using the second method, we can put a timeout 2t and repeat
the algorithm (log n)2 times. Then the failure probability will be as requested and
t′(n) = 2(log n)2t(n).

If we know how the algorithm works, then we can make a more direct analysis.

Example 21 Suppose that our goal is, given n, to find a number 2 ≤ a ≤ n− 1 such
that gcd(a, n) = 1. To simplify notation, let l = ||n|| ≈ log n be the number of digits
of n in binary notation (in a concrete application, l would be a few hundreds). Our
algorithm will be as follows:

• Repeat no more than k times:

1. Pick uniformly at random a ∈ {2, . . . , n− 1};
2. Use Euclid’s algorithm to test whether gcd(a, n) = 1.

3. If gcd(a, n) = 1 then output a and halt.

• Output “failure”.

We would like to find a value of k such that the probability that the algorithm reports
a failure is negligible in the size of the input (i.e. in l).

At each iteration, the probability that algorithm finds an element that is coprime with
n is

φ(n)

n− 2
≥ 1

6 log log n
=

1

6 log l

So the probability that there is a failure in one iteration is at most(
1− 1

6 log l

)
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and the probability of k consecutive independent failures is at most

(
1− 1

6 log l

)k
≤ e−k/6 log l

if we set k = (log l)3 then the probability of k consecutive failures is at most

e−(log l)3/6 log l = l−(log l)/6

that is negligible in l.
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