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Summary

Today we define the notion of computational zero knowledge and show that the sim-
ulator we described in the last lecture establishes the computational zero knowledge
property of the 3-coloring protocol.

1 The Protocol and the Simulator

Recall that we use a commitment scheme (C,O) for messages in {1, 2, 3}, and that
the common input to the prover and the verifier is a graph G = ([n], E), where [n] :=
{1, 2, . . . , n}. The prover, in addition, is given a valid 3-coloring α : [n]→ {1, 2, 3} of
G.

The protocol is defined as follows:

• The prover picks a random permutation π : {1, 2, 3} → {1, 2, 3} of the set
of colors, and defines the 3-coloring β(v) := π(α(v)). The prover picks n keys
K1, . . . , Kn for (C,O), constructs the commitments cv := C(Kv, β(v)) and sends
(c1, . . . , cn) to the verifier;

• The verifier picks an edge (u, v) ∈ E uniformly at random, and sends (u, v) to
the prover;

• The prover sends back the keys Ku, Kv;

• If O(Ku, cu) and O(Kv, cv) are the same color, or if at least one of them is equal
to FAIL, then the verifier rejects, otherwise it accepts

For every verifier algorithm V ∗, we defined a simulator algorithm S∗ which repeats
the following procedure until the output is different from FAIL:

Algorithm S∗1round

• Input: graph G = ([n], E)
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• Pick random coloring γ : [n]→ {1, 2, 3}.

• Pick n random keys K1, . . . , Kn

• Define the commitments ci := C(Ki, γ(i))

• Let (u, v) be the 2nd-round output of V ∗ given G as input and c1, . . . , cn as
first-round message

• If γ(u) = γ(v), then output FAIL

• Else output ((c1, . . . , cn), (u, v), (Ku, Kv))

We want to show that this simulator construction establishes the computational zero
knowledge property of the protocol, assuming that (C,O) is secure. We give the
definition of computational zero knowledge below.

Definition 1 (Computational Zero Knowledge) We say that a protocol (P, V )
for 3-coloring is (t, ε) computational zero knowledge with simulator overhead so(·) if
for every verifier algorithm V ∗ of complexity ≤ t there is a simulator S∗ of complexity
≤ so(t) on average such that for every algorithm D of complexity ≤ t, every graph G
and every valid 3-coloring α we have

|P[D(P (G,α)↔ V ∗(G)) = 1]− P[D(S∗(G)) = 1]| ≤ ε

Theorem 2 Suppose that (C,O) is (2t + O(nr), ε/(4 · |E| · n))-secure and that C is
computable in time ≤ r.

Then the protocol defined above is (t, ε) computational zero knowledge with simulator
overhead at most 1.6 · t+O(nr).

2 Proving that the Simulation is Indistinguishable

In this section we prove Theorem 2.

Suppose that the Theorem is false. Then there is a graph G, a 3-coloring α, a verifier
algorithm V ∗ of complexity ≤ t, and a distinguishing algorithm D also of complexity
≤ t such that

|P[D(P (G,α)↔ V ∗(G)) = 1− P[D(S∗(G)) = 1]| ≥ ε

Let 2Ru,v be the event that the edge (u, v) is selected in the second round; then
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ε ≤ |P[D(P (G,α)↔ V ∗(G)) = 1]− P[D(S∗(G)) = 1]|

=

∣∣∣∣∣∣
∑

(u,v)∈E
P[D(P (G,α)↔ V ∗(G)) = 1 ∧ 2Ru,v]

−
∑

(u,v)∈E
P[D(S∗(G)) = 1 ∧ 2Ru,v]

∣∣∣∣∣∣
≤

∑
(u,v)∈E

|P[D(P (G,α)↔ V ∗(G)) = 1 ∧ 2Ru,v]

−P[D(S∗(G)) = 1 ∧ 2Ru,v]|

So there must exist an edge (u∗, v∗) ∈ E such that

|P[D(P ↔ V ∗) = 1 ∧ 2Ru∗,v∗ ]− P[D(S∗) = 1 ∧ 2Ru∗,v∗ ]| ≥
ε

|E|
(1)

(We have omitted references to G,α, which are fixed for the rest of this section.)

Now we show that there is an algorithm A of complexity 2t + O(nr) that is able to
distinguish between the following two distributions over commitments to 3n colors:

• Distribution (1) commitments to the 3n colors 1, 2, 3, 1, 2, 3, . . . , 1, 2, 3;

• Distribution (2) commitments to 3n random colors

Algorithm A:

• Input: 3n commitments da,i where a ∈ {1, 2, 3} and i ∈ {1, . . . , n};

• Pick a random permutation π : {1, 2, 3} → {1, 2, 3}

• Pick random keys Ku∗ , Kv∗

• Construct the sequence of commitments c1, . . . , cn by setting:

– cu∗ := C(Ku∗ , π(α(u∗))

– cv∗ := C(Kv∗ , π(α(v∗))

– for every w ∈ [n]− {u∗, v∗}, cw := dπ(α(w)),w

• If the 2nd round output of V ∗ given G and c1, . . . , cn is different from (u∗, v∗)
output 0
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• Else output D((c1, . . . , cn), (u∗, v∗), (Ku∗ , Kv∗))

First, we claim that

P[A(Distribution 1) = 1] = P[D(P ↔ V ∗) = 1 ∧ 2Ru∗,v∗ ] (2)

This follows by observing that A on input Distribution (1) behaves exactly like the
prover given the coloring α, and that A accepts if and only if the event 2Ru∗,v∗ happens
and D accepts the resulting transcript.

Next, we claim that

|P[A(Distribution 2) = 1]− P[D(S∗) = 1 ∧ 2Ru∗,v∗ ]| ≤
ε

2|E|
(3)

To prove this second claim, we introduce, for a coloring γ, the quantity DA(γ), defined
as the probability that the following probabilistic process outputs 1:

• Pick random keys K1, . . . , Kn

• Define commitments cu := C(Ku, γ(u))

• Let (u, v) be the 2nd round output of V ∗ given the input graph G and first
round message c1, . . . , cn

• Output 1 iff (u, v) = (u∗, v∗), γ(u∗) 6= γ(v∗), and

D((c1, . . . , cn), (u∗, v∗), (Ku∗ , Kv∗)) = 1

Then we have

P[A(Distribution 2) = 1] =
∑

γ:γ(u∗)6=γ(v∗)

3

2
· 1

3n
·DA(γ) (4)

Because A, on input Distribution 2, first prepares commitments to a coloring chosen
uniformly at random among all 1/(6 · 3n−2) colorings such that γ(u∗) 6= γ(v∗) and
then outputs 1 if and only if, given such commitments as first message, V ∗ replies
with (u∗, v∗) and the resulting transcript is accepted by D.

We also have

P[D(S∗) = 1 ∧ 2Ru∗,v∗ ] =
1

P[S∗1Round 6= FAIL]
·

∑
γ:γ(u∗)6=γ(v∗)

1

3n
·DA(γ) (5)
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To see why Equation (5) is true, consider that the probability that S∗ outputs a par-
ticular transcript is exactly 1/P[S∗1Round 6= FAIL] times the probability that S∗1Round
outputs that transcript. Also, the probability that S∗1Round outputs a transcript which
involves (u∗, v∗) at the second round and which is accepted by D() conditioned on
γ being the coloring selected at the beginning is DA(γ) if γ is a coloring such that
γ(u∗) 6= γ(v∗), and it is zero otherwise. Finally, S∗1Round selects the initial coloring
uniformly at random among all possible 3n coloring.

From our security assumption on (C,O) and from Lemma 6 in Lecture 27 we have∣∣∣∣P[S∗1Round 6= FAIL]− 2

3

∣∣∣∣ ≤ ε

4|E|
(6)

and so the claim we made in Equation (3) follows from Equation (4), Equation (5),
Equation (6) and the fact that if p, q are quantities such that 3

2
p ≤ 1, 1

q
· p ≤ 1, and∣∣q − 2

3

∣∣ ≤ δ ≤ 1
6

(so that q ≥ 1/2), then∣∣∣∣32p− 1

q
p

∣∣∣∣ =
3

2
· p · 1

q
·
∣∣∣∣q − 2

3

∣∣∣∣ ≤ 2δ

(We use the above inequality with q = P[S∗1Round 6= FAIL], δ = ε/4|E|, and p =∑
γ:γ(u∗) 6=γ(v∗)

1
3nDA(γ).)

Having proved that Equation (3) holds, we get

|P[A(Distribution 1) = 1]− P[A(Distribution 2) = 1]| ≥ ε

2|E|

where A is an algorithm of complexity at most 2t+O(nr). Now by a proof similar to
that of Theorem 3 in Lecture 27, we have that (C,O) is not (2t + O(nr), ε/(2|E|n))
secure.
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