
U.C. Berkeley — CS276: Cryptography Handout N21
Luca Trevisan April 7, 2009

Notes for Lecture 21

Scribed by Anand Bhaskar, posted May 1, 2009

Summary

Today we show how to construct an inefficient (but efficiently verifiable) signature
scheme starting from a one-time signature scheme.

Next time we shall see how to make it efficient using a pseudorandom function.

From One-Time Signatures to Fully Secure Signa-

tures

Assume we have a (t, ε)-secure one-time signature scheme (G,S, V) such that if m
is the length of messages that can be signed by S, then the length of public keys
generated by G() is at most m/2.

(Lamport’s signatures do not satisfy the second property, but in Lecture 20 we de-
scribed how to use a collision-resistant hash function to turn Lamport’s scheme into
a scheme that can sign longer messages. We can arrange the parameters of the con-
struction so that the hash-and-sign scheme can sign messages at least twice as long
as the public key.)

We describe a scheme in which the key generation and signing have exponential
complexity; later we will see how to reduce their complexity.

• Key Generation: run G() 2m+1 − 1 times, once for every string a ∈ {0, 1}∗ of
length at most m, and produce a public key / secret key pair (pka, ska).

It is convenient to think of the strings a of length at most m as being arranged
in a binary tree, with a being the parent of a0 and a1, and the empty string ε
being the root.

– Public Key: pkε (where ε is the empty string)

– Secret Key: the set of all pairs (pka, ska) for all a of length ≤ m.

• Sign: given a message M of length m, denote by M|i the string M1, . . . ,Mi

made of the first i bits of M . Then the signature of M is composed of m + 1
parts:

1

– pkM , S(skM ,M): the signature of M using secret key skM , along with the
value of the matching public key pkM

– pkM|m−1
, pkM|m−10||pkM|m−11, S(skM|m−1

, pkM|m−10||pkM|m−11) the signature of
the public keys corresponding to M and its sibling, signed using the secret
key corresponding to the parent of M , along with the public keys

– · · ·
– pkM|i , pkM|i0||pkM|i1, S(skM|i , pkM|i0||pkM|i1)
– · · ·
– pk0, pk1, S(skε, pk0||pk1)

• Verify. The verification algorithm receives a public key pkε, a message M , and
a signature made of m + 1 pieces: the first piece is of the form (pkm, σm), the
following m − 1 pieces are of the form (pkj, pk

′
j, pk

′′
j , σj), for j = 1, . . . ,m − 1,

and the last piece is of the form (pk′0, pk
′′
0 , σ0).

The verification algorithm:

1. checks V (pkm,M, σm) is valid;

2. For j = 1, . . . ,m, if Mj = 0 it checks that pk′j−1 = pkj, and if Mj = 1 it
checks that pk′′j−1 = pkj;

3. For j = 0, . . . ,m − 1, it checks that V (pkj, pk
′
j||pk′′j , σj) is valid. (For the

case j = 0, we take pk0 := pkε.)

We visualize the m-bit messages as labels for the leaf nodes of an m level complete
binary tree. Each node a of the tree represents a public-secret key pair pka, ska. The
above scheme signs a message M by first using the one-time signature function to sign
M using the secret key skM at its corresponding leaf node, and releasing the public
key pkM for that node as part of the signature. Now the sender needs to convince the
receiver that public key pkM was really generated by the sender and not a forger. So
the sender signs the message consisting of pkM and its sibling, namely

pkM|m−1
0||pkM|m−1

1 ,

using the secret key of their parent node skM|m−1
, and releases these two public keys

and the public key pkM|m−1
as part of the message. The sender now has to convince

the receiver that pkM|m−1
was generated by the sender, and it can apply the previous

procedure again to do this. This signing procedure moves up the tree from signing
the message at the leaf node to signing messages of two public keys at each level of
the tree until it gets to the root node. The root public key pkε doesn’t have to be
signed since this is the public key that is released by the sender at the very beginning
for all future communication.

2

Each public-secret key pair node in this tree is used to sign only one message - either
the message corresponding to the leaf node if the key is at a leaf node, or the message
that is the concatenation of the public keys at its two children. Note that the public
key length is m/2 and so there are only 2m/2 distinct public keys in this tree which
has 2m+1 − 1 nodes. There will certainly be many copies (on average 2m/2+1) of each
public key at different nodes of the tree. We might be concerned that an adversary
might then see many signatures for the same public key and have a much higher
chance of breaking the one-time signature scheme for some public key. But if this
attack was feasible, then the adversary might as well have generated public-secret
key pairs by calling G() and checking if one of these matched some public key seen
in the signature of some earlier message - thus, in this scheme, the adversary doesn’t
get any extra power from seeing multiple signatures using the same key pair.

The theorem below shows that if it is hard for an adversary to forge signatures for the
one-time signature scheme (G,S, V), then it will be also be hard to forge signatures
under this tree-scheme.

Theorem 1 Suppose that the scheme described in this section is not (t, ε) existentially
unforgeable against a chosen message attack.

Then (G,S, V) is not a (t ·O(r ·m), ε/(2tm+ 1))-secure one time signature scheme,
where r is the maximum of the running time of S and G.

Proof: If the tree-scheme is not (t, ε) existentially unforgeable against a chosen
message attack, then there exists an algorithm A with complexity ≤ t such that

P[ASign()(pk) forges] ≥ ε

A makes ≤ t queries to the signing oracle before outputting a fresh message and its
forged signature. Hence, A can only see ≤ 2tm+ 1 public keys (and signatures using
them) generated by the key generation algorithm G. Using A as a subroutine, we
will construct an algorithm A′ which given as input a public key pk′ of the signature
scheme (G,S, V) and one-time access to the signature function S(sk′, ·) will forge a
signature for a fresh message with probability ≥ ε.

A′ picks a random integer i∗ in {1, ..., 2tm+1} and using the key generation algorithm
G(), generates 2tm key pairs

(pk1, sk1), ..., (pki
∗−1, ski

∗−1), (pki
∗+1, ski

∗+1), ..., (pk2tm+1, sk2tm+1)

For notational convenience, set pki
∗

= pk′.

A′ now simulates A on input pk1. Whenever A makes a call to Sign() with a given
message, A′ performs the signing algorithm of the tree-scheme by using the public-
secret key pairs it randomly generated at the beginning. A′ will keep track of which

3

nodes of the tree were already assigned key pairs from it’s cache of 2tm+ 1 key pairs.
Since at worst 2tm+ 1 key pairs are needed for performing the t signatures requested
by A, A′ can satisfy all these signature queries using its generated key pairs. If A′

needs to sign using S(sk′, ·), it will use its one-time access to S(sk′, ·) to perform this
action. A′ won’t have to call S(sk′, ·) twice with different messages since a public key
is never used to sign more than one message in the tree-scheme, unless coincidentally
pk′ is present as another pkj, j 6= i in the list of 2tm key-pairs generated, in which
case A′ would have the secret key sk′ corresponding to pk′ and can completely break
(G,S, V). The view of A being run in the simulation by A′ is exactly the same as if
A had been run on a random public key as input. Hence, the probability A produces
a forgery is ≥ ε.

If A produces a fresh message M and its valid signature

{pk′M|i , pk
′
M|i0
||pk′M|i1, σ

′
M|i
}m−1
i=0 , pk

′
M|m

, σ′M|m

then let j be the largest integer such that pk′M|j was seen by A as part of the signature

of some message at position M|j in the virtual signature tree. Hence, pk′M|j must be

one of the 2tm + 1 keys pki generated by A′. Such a value of j must exist because
certainly 0 is a candidate for j (since the public key pk′ε = pk′M|0 = pk1 was given as

input to A).

Based on the value of j, there are two cases:

• j ∈ {0, ...,m − 1}. Hence, pk′M|j = pki for some i, and if i = i∗, then A′ will

output the message-signature pair pk′M|j0||pk
′
M|j1

, σ′M|j as a forgery.

V (pk′M|j , pk
′
M|j0
||pk′M|j1, σ

′
M|j

) = 1 because this was part of the valid tree-scheme

signature of message M output by A. By the definition of j, A has never seen the
signature of pk′M|j0||pk

′
M|j1

before. Since the position i∗ was chosen randomly,

the event i = i∗ has probability 1/(2tm+ 1).

• j = m. Here, all the intermediate public keys in the forged signature of M
match those seen by A (and hence match the keys generated by A′), but the
signature of M at the last level of the tree itself has not been seen. Hence,
pk′M |m = pki for some i and V (pk′M |m,M, σ′M|m) = 1 because M is a valid forge

produced by A. If i = i∗, then A′ outputs the forged message-signature pair
M,σ′M|m . Again, since the position i∗ was chosen randomly, the event i = i∗ has

probability 1/(2tm+ 1).

Conditioned on algorithm A outputting a forge to the tree scheme, in both cases
algorithm A′ produces a forge to the original scheme (G,S, V) with probability
1/(2tm + 1). Hence, the probability that A′ produces a forge to (G,S, V) is ≥
ε/(2tm + 1). The running time of the simulation A′ is dominated by having to

4

generate 2tm key pairs and performing m signatures using S for each of the t signing
queries made by A, and is t ·O(r ·m).

�

5

