
U.C. Berkeley — CS276: Cryptography Handout N20
Luca Trevisan April 2, 2009

Notes for Lecture 20

Scribed by Nick Jalbert, posted May 1, 2009

Summary

Today we begin to talk about signature schemes.

We describe various ways in which “textbook RSA” signatures are insecure, develop
the notion of existential unforgeability under chosen message attack, analogous to
the notion of security we gave for authentication, and discuss the difference between
authentication in the private-key setting and signatures in the public-key setting.

As a first construction, we see Lamport’s one-time signatures based on one-way func-
tions, and we develop a rather absurdly inefficient stateful scheme based on one-time
signatures. The scheme will be interesting for its idea of “refreshing keys” which will
be used next time to design a stateless, and reasonably efficient, scheme.

1 Signature Schemes

Signatures are the public-key equivalents of MACs. The set-up is that Alice wants to
send a message M to Bob, and convince Bob of the authenticity of the message. Alice
generates a public-key/ secret-key pair (pk, sk), and makes the public key known to
everybody (including Bob). She then uses an algorithm Sign() to compute a signature
σ := Sign(sk,M) of the message; she sends the message along with the signature to
Bob. Upon receiving M,σ, Bob runs a verification algorithm V erify(pk,M, σ), which
checks the validity of the signature. The security property that we have in mind,
and that we shall formalize below, is that while a valid signature can be efficiently
generated given the secret key (via the algorithm Sign()), a valid signature cannot
be efficiently generated without knowing the secret key. Hence, when Bob receives
a message M along with a signature σ such that V erify(pk,M, σ) outputs “valid,”
then Bob can be confident that M is a message that came from Alice. (Or, at least,
from a party that knows Alice’s secret key.)

There are two major differences between signatures in a public key setting and MAC
in a private key setting:

1. Signatures are transferrable: Bob can forward (M,σ) to another party and
the other party can be confident that Alice actually sent the message, assuming

1

a public key infrastructure is in place (or, specifically that the other party has
Alice’s public key).

2. Signature are non-repudiable: Related to the first difference, once Alice
signs the message and sends it out, she can no longer deny that it was actually
her who sent the message.

Syntactically, a signature scheme is a collection of three algorithms (Gen, Sign, V erify)
such that

• Gen() takes no input and generates a pair (pk, sk) where pk is a public key and
sk is a secret key;

• Given a secret key sk and a message M , Sign(sk,M) outputs a signature σ;

• Given a public key pk, a messageM , and an alleged signature σ, V erify(sk,M, σ)
outputs either “valid” or “invalid”, with the property that for every public key/
secret key pair (pk, sk), and every message M ,

V erify(pk,M, Sign(sk,M)) = “valid”

The notion of a signature scheme was described by Diffie and Hellman without a
proposed implementation. The RSA paper suggested the following scheme:

• Key Generation: As in RSA, generate primes p, q, generate e, d such that ed ≡
1 mod (p− 1) · (q − 1), define N := p · q, and let pk := (N, e) and sk := (N, d).

• Sign: for a message M ∈ {0, . . . , N − 1}, the signature of M is Md mod N

• Verify: for a message M and an alleged signature σ, we check that σe ≡ M
(mod N).

Unfortunately this proposal has several security flaws.

• Generating random messages with valid signatures: In this attack, you pick a
random string σ and compute M := σe mod N and now σ is a valid signature
for M . This can be an effective attack if there are a large number of messages
that are useful to forge.

• Combining signed messages to create the signature of their products: Suppose
you have M1 and M2 with valid signatures σ1 and σ2 respectively. Note that
σ1 := M e

1 mod N and σ2 := M e
2 mod N . We can now generate a valid signature

for M := M1 ·M2 mod N :

2

σM = M e mod N

= (M1 ·M2)
e mod N

= ME
1 ·M e

2 mod N

= σ1 · σ2 mod N

• Creating signatures for arbitrary messages: Suppose the adversary wants to
forge message M . If it is able to get a valid signature for a random message m1

and a specifically chosen message m2 := M/m1 mod N then the adversary can
use the second attack to calculate a valid signature for M (i.e. m1 ·m2 mod N =
M and σ1 · σ2 mod N = σM .

Ideally, we would like the following notion of security, analogous to the one we achieved
in the secret-key setting.

Definition 1 A signature scheme (G,S, V) is (t, ε) existentially unforgeable under
a chosen message attack if for every algorithm A of complexity at most t, there is
probability ≤ ε that A, given a public key and a signing oracle, produces a valid
signature of a message not previously sent to the signing oracle.

It was initially thought no signature scheme could meet this definition. The so called
“paradox” of signature schemes was that it seemed impossible to both have a scheme
in which forgery is difficult (that is, equivalent to factoring) while simultaneously
having this scheme be immune to chosen message attacks. Essentially the paradox
is that the proof that a scheme is difficult to forge will generally use a black-box
forging algorithm to then construct a factoring algorithm. However, if this scheme
were subject to a chosen message attack, a new algorithm could be constructed which
would simulate the constructed factoring algorithm and totally break the signature
scheme. This new algorithm would be exactly the same as the one used in the forgery
proof except every query to the black-box forging algorithm instead becomes one
of the messages sent to the oracle. Goldwasser et al.’s paper “A Digital Signature
Scheme Secure Against Adaptive Chosen-Message Attacks” gives further details and
describes breaking the paradox.

2 One-Time Signatures and Key Refreshing

We begin by describing a simple scheme which achieves a much weaker notion of
security.

3

Definition 2 (One-Time Signature) A signature scheme (G,S, V) is a (t, ε)-secure
one-time signature scheme if for every algorithm A of complexity at most t, there is
probability ≤ ε that A, given a public key and one-time access to a signing oracle,
produces a valid signature of a message different from the one sent to the signing
oracle.

We describe a scheme due to Leslie Lamport that is based on one-way function.

• KeyGen G: pick a secret key which consists of 2` n-bit random strings

x0,1, x0,2, ..., x0,`

x1,1, x1,2, ..., x1,`

we now generate a public key by applying f to each x∗,∗ in our secret key:

f(x0,1), f(x0,2), ..., f(x0,`)

f(x1,1), f(x1,2), ..., f(x1,`)

• Sign S: we sign an `-bit message M := M1||M2||...||M` with the signature
σ := xm1,1, xm2,2, ..., xm`,`

e.g. the message M:= 0110 gets the signature σM := x0,1, x1,2, x1,3, x0,4

• Verify V : we verify a message M := M1...M`’s signature σ := z1...z` by using
public key pk and checking ∀i f(zi) = pkMi,i

Theorem 3 Let f : {0, 1}n → {0, 1}n be a (t, ε) one way function computable in time
r. Then there is a one-time signature scheme (G,S, V) that signs messages of length
` and that is (t−O(rl), ε · 2`) secure.

Suppose this scheme does not provide a (t, ε)-one time signature. This implies that
there must be an algorithm A with complexity ≤ t which makes 1 oracle query and

P[AS(sk,·)(pk) forges a signature] > ε

Intuitively, when we are given a string y := f(x) we want to use A to break the
security of f and determines the pre-image of y.

We now describe the operation A′, the algorithm that breaks the security of f . A′

begins by generating a public key pk (which requires 2` evaluations of f). Once A′

generates pk, it sets a random position in it to the string y. Note the distribution
of values in this modified pk will look exactly to the same A because y is also an
evaluation of f .

4

A′ now runs A passing it pk, A will query the oracle with a message to sign. With
probability 1/2 this message will not require A′ to invert y. If this is the case, then
with probability > ε A generates a forged message M ′ and signature σM ′ . M ′ must
differ from the oracle query by at least one bit, that is this forgery finds the inverse
of at least one element of pk not queried. This inverse will be y−1 with probability
1/`.

A′ runs in time at most t+O(r`) if r is the running time of f and and inverts y with
probability ε/2`. Thus if we take f to be (t, ε)-secure, then this signature scheme
must be (t−O(rl), ε · 2`) secure. �

A disadvantage of the scheme (besides the fact of being only a one-time signature
scheme) is that the length of the signature and of the keys is much bigger than the
length of the message: a message of length ` results in a signature of length ` ·n, and
the public key itself is of length 2 · ` · n.

Using a collision resistant hash function, however, we can convert a one-time signature
scheme that works for short messages into a one-time signature scheme that works for
longer messages. (Without significantly affecting key length, and without affecting
the signature length at all.)

We use the hash function to hash the message into a string of the appropriate length
and then sign the hash:

• G′(): generates a secret key and a public key (sk, pk) as G did above. Also
picks a random seed d ∈ {0, 1}k which becomes part of the public key.

• S ′(sk,M): σ := S(sk,Hd(M))

• V ′((pk, d),M, σ): V (pk,Hd(M), σ)

Theorem 4 Suppose (G,S, V) is a (t, ε) secure one-time signature scheme for mes-
sages of length `, which has public key length kl and signature length sl. Sup-
pose also that we have a (t, ε) secure family of collision-resistant hash functions
H : {0, 1}k × {0, 1}m → {0, 1}`. Suppose, finally, that H,G, S all have running
time at most r.

Then there exists a (t − O(r), 2ε) secure one-time signature scheme (G′, S ′, V ′) with
public key length kl+k, signature length sl and which can sign messages of length m.

We present a sketch of the proof of this theorem.

Suppose we had an algorithm A that produced forged signatures with probability > 2ε
after one oracle query. That is, A queries the oracle with message M and gets back
σ := S ′(sk,Hd(M)) and then produces with probability > 2ε a message signature
pair, (M ′, σ′), such that V (pk,Hd(M ′), σ′) = valid and M 6= M ′.

One of the two following cases must occur with probability > ε:

5

1. The message M ′ has the same hash as M , H(M) = H(M ′). This means A
was able to find a collision in H. If A does this with probability > ε then it
contradicts our security assumptions on H.

2. If H(M) 6= H(M ′), then A forged a signature for the original scheme (G,S, V)
for a fresh message. If A can do this with probability > ε then it contradicts
our security assumptions on (G,S, V).

Because we reach a contradiction in both cases, (G′, S ′, V ′) must be a (t − O(r), 2ε)
secure one-time signature scheme.

In particular, given a one-way function and a family of collision-resistant hash func-
tions we can construct a one-time signature scheme in which the length of a signature
plus the length of the public key is less than the length of messages that can be signed
by the scheme.

If (G,S, V) is such a one-time signature scheme, then the following is a stateful scheme
that is existentially unforgeable under a chosen message attack.

Initially, the signing algorithm generates a public key/ secret key pair (pk, sk). When
it needs to sign the first message M1, it creates a new key pair (pk1, sk1), and generates
the signature σ0 := S(sk,M1||pk1). The signature of M1 is the pair (σ0, pk1). When
it, later, signs message M2, the signing algorithm generates a new key pair (pk2, sk2),
and the signature σ1 = S(sk1,M2||pk2). The signature of M2 is the sequence

M1, pk1, σ0, pk2, σ1

and so on. Of course it is rather absurd to have a signature scheme in which the
signature of the 100th message contains in its entirety the previously signed 100 mes-
sages along with their signatures, but this scheme gives an example of the important
paradigm of key refreshing, which will be more productively employed next time.

6

	Signature Schemes
	One-Time Signatures and Key Refreshing

