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Summary

Today we continue to discuss number-theoretic constructions of CPA-secure encryp-
tion schemes.

First, we return to the Decision Diffie Hellman assumption (the one under which we
proved the security of the El Gamal encryption scheme) and we show that it fails for
Z∗p, although it is conjectured to hold in the subgroup of quadratic residues of Z∗p.

Then we introduce the notion of trapdoor permutation and show how to construct
CPA-secure public-key encryption from any family of trapdoor permutations. Since
RSA is conjectured to provide a family of trapdoor permutations, this gives a way to
achieve CPA-secure encryption from RSA.

1 Decision Diffie Hellman and Quadratic Residues

Recall that if D is a distribution over triples (G, g, q), in which G is a cyclic group
of q elements and g is a generator, then D satisfies the (t, ε) Decision Diffie Hellman
Assumption if for every algorithm A of complexity ≤ t we have

|P[A(G, g, q, gx, gy, gz) = 1]− P[A(G, g, q, gx, gy, gx·y) = 1]| ≤ ε (1)

where G, g, q are distributed as in D, and x, y, z are integers uniformly distributed in
{0, . . . , q − 1}.
In Lecture 17, we gave the group Z∗p, p prime, as an example of cyclic group for
which the discrete logarithm problem is conjectured to be hard. The Decision Diffie
Hellman assumption, however, is always false for groups of the type Z∗p.

To see why, we need to consider the notion of quadratic residue in Z∗p. An integer
a ∈ {1, . . . , p − 1} is a quadratic residue if there exists r ∈ {1, . . . , p − 1} such that
a = r2 mod p. (In such a case, we say that r is a square root of a.)

As an example, let p = 11. The elements of Z∗p are,

Z∗p = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
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The squares of the elements, mod p:

1, 4, 9, 5, 3, 3, 5, 9, 4, 1

The quadratic residues of Z∗p:

Qp = {1, 4, 9, 5, 3}

For every odd primes p, exactly (p−1)/2 of the elements of Z∗p are quadratic residues,
and each has two square roots. Furthermore, there is an efficient algorithm (polyno-
mial in the number of digits of a) to check whether a is a quadratic residue. This
fact immediately gives an algorithm that contradicts (1) if we take G to be Z∗p, when
ε < 1/4. To see why this is so, first consider g, a generator in Z∗p. Then gx mod p is
a quadratic residue if and only if x is even:

Since g is a generator, Z∗p can be written as,

Z∗p = {g0, g1, . . . , gp−2}

Squaring every element in Z∗p gives the quadratic residues:

Qp = {g0, g2, . . . , g2(p−2)}

When x is even, gx is the square of gx/2 ∈ Z∗p. All the quadratic residues can be
written as gx, x = 2i so x must be even.

In (1) gz is a random element in Z∗p so it is a quadratic residue with probability 1/2.
But gx·y is a quadratic residue with probability 3/4 (if x, y, or x and y are even).
Since there is an efficient algorithm to check if a value is a quadratic residue, the
algorithm A can easily distinguish between (G, g, q, gx, gy, gz) and (G, g, q, gx, gy, gx·y

with probability > 1/4 by outputting 1 when it finds that the final input parameter
(either gz or gx·y) is a quadratic residue.

Note, however, that the set Qp of quadratic residues of Z∗p is itself a cyclic group, and
that if g is a generator of Z∗p then g2 mod p is a generator of Qp.

Qp is a cyclic group:

• 1 is a quadratic residue

• if r1 = x2
1, r2 = x2

2 are quadratic residues, then r1 · r2 = (x1 · x2)
2 is a quadratic

residue.

• if r = x2 is a quadratic residue then r−1 = (x−1)2 is a quadratic residue

If g is a generator of Z∗p then g2 mod p is a generator of Qp:

Qp = {g0, g2, . . . g2(p−2)}
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Which is exactly
Qp = {(g2)0, (g2)1, . . . (g2)(p−2)}

It is believed that if p is a prime of the form 2q+1, where q is again prime then taking
G = Qp and letting g be any generator of G satisfies (1), with t and 1/ε exponentially
large in the number of digits of q.

2 Trapdoor Permutations and Encryption

A family of trapdoor permutations is a triple of algorithms (G,E,D) such that:

1. G() is a randomized algorithm that takes no input and generates a pair (pk, sk),
where pk is a public key and sk is a secret key;

2. E is a deterministic algorithm such that, for every fixed public key pk, the
mapping x→ E(pk, x) is a bijection;

3. D is a deterministic algorithm such that for every possible pair of keys (pk, sk)
generated by G() and for every x we have

D(sk, E(pk, x)) = x

That is, syntactically, a family of trapdoor permutations is like an encryption scheme
except that the “encryption” algorithm is deterministic. A family of trapdoor permu-
tations is secure if inverting E() for a random x is hard for an adversary that knows
the public key but not the secret key. Formally,

Definition 1 A family of trapdoor permutations (G,E,D) is (t, ε)-secure if for every
algorithm A of complexity ≤ t

P
(pk,sk)←G(),x

[A(pk, (E(pk, x))) = x] ≤ ε

It is believed that RSA defines a family of trapdoor permutations with security pa-
rameters t and 1/ε that grow exponentially with the number of digits of the key.

Right now the fastest factoring algorithm is believed to run in time roughly 2O(k1/3),
where k is the number of digits, and so RSA with k-bit key can also be broken in that
much time. In 2005, an RSA key of 663 bits was factored, with a computation that
used about 262 elementary operations. RSA with keys of 2048 bits may plausibly be
(260, 2−30)-secure as a family of trapdoor permutations.

In order to turn a family of trapdoor permutations into a public-key encryption
scheme, we use the notion of a trapdoor predicate.
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Definition 2 Let (G,E,D) be a family of trapdoor permutations, where E takes
plaintexts of length m. A boolean function P : {0, 1}m → {0, 1} is a (t, ε)-secure
trapdoor predicate for (G,E,D) if for every algorithm A of complexity ≤ t we have

P
(pk,sk)←G(), x

[A(pk,E(pk, x)) = P (x)] ≤ 1

2
+ ε

Remark 3 The standard definition is a bit different. This simplified definition will
suffice for the purpose of this section, which is to show how to turn RSA into a
public-key encryption scheme.

Essentially, P is a trapdoor predicate if it is a hard-core predicate for the bijection
x → E(pk, x). If (G,E,D) is a secure family of trapdoor permutations, then x →
E(pk, x) is one-way, and so we can use Goldreich-Levin to show that 〈x, r〉 is a
trapdoor predicate for the permutation E ′(pk, (x, r)) = E(pk, x), r.

Suppose now that we have a family of trapdoor permutations (G,E,D) and a trapdoor
predicate P . We define the following encryption scheme (G′, E ′, D′) which works with
one-bit messages:

• G′(): same as G()

• E ′(pk, b): pick random x, output E(pk, x), P (x)⊕ b

• D′(pk, (C, c)) := P (D(pk, C))⊕ c

Theorem 4 Suppose that P is (t, ε)-secure trapdoor predicate for (G,E,D), then
(G′, E ′, D′) as defined above is (t−O(1), 2ε)-CPA secure public-key encryption scheme.

Proof: In Theorem 2 of Lecture 13 we proved that if f is a permutation and P is a
(t, ε) hard-core predicate for f , then for every algorithm A of complexity ≤ t−O(1)
we have

|P[A(f(x), P (x)) = 1]− P[A(f(x)), r) = 1]| ≤ ε (2)

where r is a random bit. Since

P[A(f(x)), r) = 1] =
1

2
P[A(f(x), P (x)) = 1] +

1

2
P[A(f(x), 1⊕ P (x)) = 1]

we can rewrite (2) as

|P[A(f(x), P (x)) = 1]− P[A(f(x)), P (x)⊕ 1) = 1]| ≤ 2ε

And taking f to be our trapdoor permutation,
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|P[A(E(pk, x), P (x)⊕ 0) = 1]− P[A(E(pk, x), P (x)⊕ 1) = 1]| ≤ 2ε

that is,

|P[A(E ′(pk, 0)) = 1]− P[A(E ′(pk, 1)) = 1]| ≤ 2ε

showing that E ′ is (t−O(1), 2ε) CPA secure. �

The encryption scheme described above is only able to encrypt a one-bit message.
Longer messages can be encrypted by encrypting each bit separately. Doing so,
however, has the undesirable property that an ` bit message becomes an ` · m bit
ciphertext, if m is the input length of P and E(pk, ·). A “cascading construction”
similar to the one we saw for pseudorandom generators yields a secure encryption
scheme in which an `-bit message is encrypted as a cyphertext of length only `+m.
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