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Summary

Today we discuss the three ways in which definitions of security given in class differ
from the way they are given in the Katz-Lindell textbook,.

Then we study the security of hybrid encryption schemes, in which a public-key scheme
is used to encode the key for a private-key scheme, and the private-key scheme is used
to encode the plaintext.

We also define RSA and note that in order to turn RSA into an encryption scheme
we need a mechanism to introduce randomness.

1 Definitions of Security

There are three ways in which the definitions of security given in class differ from the
way they are given in the textbook. The first one applies to all definitions, the second
to definitions of encryption, and the third to CPA and CCA notions of security for
encryption:

1. Our definitions usually refer to schemes of fixed key length and involve param-
eters t, ε, while the textbook definitions are asymptotic and parameter-free.

Generally, one obtains the textbook definition by considering a family of con-
structions with arbitrary key length (or, more abstractly “security parameter”)
k, and allowing t to grow like any polynomial in k and requiring ε to be negli-
gible. (Recall that a non-negative function ν(k) is negligible if for every poly-
nomial p we have limk→∞ p(k) · ν(k) = 0.)

The advantage of the asymptotic definitions is that they are more compact and
make it easier to state the result of a security analysis. (Compare “if one-way
permutations exist, then length-increasing pseudorandom generators exist” with
“if f : {0, 1}n → {0, 1}n is a (t, ε) one-way permutation computable in time ≤ r,
then there is a generator G : {0, 1}2n → {0, 1}2n+1 computable in time r+O(n)
that is (tε4/(n2 log n)− rε−4n3 log n, ε/3) pseudorandom”)
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The advantage of the parametric definitions is that they make sense for fixed-key
constructions, and that they make security proofs a bit shorter.

(Every asymptotic security proof starts from “There is a polynomial time ad-
versary A, an infinite set N of input lengths, and a polynomial q(), such that
for every n ∈ N . . ..)

2. Definitions of security for an encryption algorithm E(), after the proper quan-
tifications, involve an adversary A (who possibly has oracles, etc.) and messages
m0, m1; we require

|P[A(E(m0)) = 1]− P[A(E(m1)) = 1]| ≤ ε (1)

while the textbook usually has a condition of the form

P
b∈{0,1}

[A(E(mb)) = b] ≤ 1

2
+
ε

2

The two conditions are equivalent since

P[A(E(mb)) = b] =
1

2
P[A(E(m0)) = 0] +

1

2
P[A(E(m1)) = 1

and the absolute value in (1) may be removed without loss of generality (at the
cost of increasing the complextiy parameter by one).

3. Definitions of CPA and CCA security, as well as all definitions in the public-key
setting, have a different structure in the book. The difference is best explained
by an example. Suppose we have a public-key scheme (G,E,D) such that, for
every valid public key pk, E(pk, pk) has some distinctive pattern that makes
it easy to distinguish it from other ciphertexts. This could be considered a
security weakness because an eavesdropper is able to see if a party is sending a
message that concerns the public key.

This would not be a concern if the encryption mechanism were separate from the
transport mechanism. For instance, if the application of this scheme occurred
in such a way they two parties are securely communicating over an instant mes-
saging client which exists in the application layer and encryption were occurring
layers below in the transport layer. This abstraction of layers and separation of
the encryption mechanism from the application abstracts away the notion that
the public key could be encrypted with the public key. The messaging client is
aware of the interface, but it never exposes the actual public or private key to
the user, which prevents incorrectly using the cryptographic primitives.
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You can show as an exercise that if a secure public-key encryption scheme
exists, then there is a public-key encryption scheme that is secure according to
our definition from last lecture but that has a fault of the above kind.

The textbook adopts a two-phase definition of security, in which the adversary is
allowed to choose the two messages m0,m1 that it is going to try and distinguish,
and the choice is done after having seen the public key. A random bit b is chosen
and then the ciphertext of mb is computed and given to the adversary. The
adversary continues to have access to the Encryption function with the given
public key. When the adversary is done, it outputs a guess called b′ The output
of this procedure is 1 when b = b′. A cryptosystem in which E(pk, pk) can be
distinguished from other ciphertexts violates this definition of security.

2 Hybrid Encryption

Let (G1, E1, D1) be a public-key encryption scheme and (E2, D2) a private-key en-
cryption scheme.

Consider the following hybrid scheme (G,E,D):

• G(): same as G1()

• E(pk,m): pick a random key K for E2, output (E1(pk,K), E2(K,m))

• D(sk, (C1, C2)): output D2(D1(sk, C1), C2)

A hybrid approach to public key cryptography is often desired due to the fact that
public key operations are computationally expensive (i.e modular exponentiation),
while symmetric key cryptosystem are usually more efficient. The basic idea behind
the hybrid approach that if we encrypt the symmetric private key with the public
key and encrypt the message with the symmetric private key, only the small sym-
metric private key needs to be encrypted with the public key and symmetric key
encryption/decryption can take place on the actual message. This allows for efficient
computation of the message encryption and decryption while only using asymmetric
key cryptography for transmitting the symmetric shared secret. This construction
makes encryption and decryption much more efficient while still ensuring the con-
struction has message indistinguishability and CPA security.

Theorem 1 Suppose (G1, E1, D1) is (t, ε1)-secure for one encryption and (E2, D2) is
(t, ε2)-secure for one encryption. Suppse also that E1, E2 have running time ≤ r.

Then (G,E,D) is (t− 2r, 2ε1 + ε2)-secure for one encryption.
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We begin by assuming the conclusion of the theorem is false, that is (G,E,D) is not
(t− 2r, 2ε1 + ε2)-secure.

Suppose there is an adversary A, that runs in time t′ and there are two messages m0

and m1 such that:

|P[A(pk,E(pk,m0)) = 1]− P[A(pk,E(pk,m1)) = 1]| > 2ε1 + ε2

Then the definition of E() is applied, so

|P[A(pk,E1(pk,K), E2(K,m0)) = 1]− P[A(pk,E1(pk,K), E2(K,m1) = 1]| > 2ε1 + ε2

We then apply a hybrid argument in which the hybrid distributions have E1(pk,0)
instead of E1(pk,K). (0 denotes a string of zeroes; any other fixed string could be
used in the proof.)

Producing:

2ε1 +ε2 < P[A(pk,E1(pk,K), E2(K,m0)) = 1]−P[A(pk,E1(pk,K), E2(K,m1) = 1] ≤

‖P[A(pk,E1(pk,K), E2(K,m0)) = 1]− P[A(pk,E1(pk,0), E2(K,m0)) = 1]‖+

‖P[A(pk,E1(pk,0), E2(K,m0)) = 1]− P[A(pk,E1(pk,0), E2(K,m1)) = 1]‖+

‖P[A(pk,E1(pk,0), E2(K,m1)) = 1]− P[A(pk,E1(pk,K), E2(K,m1)) = 1]‖

This means that at least one of the following cases must happen:

a) the first difference is at least ε1

b) the second difference is at least ε2

c) the third difference is at least ε1

If (a) or (c) are true, then it means that there is a message m such that:

‖P[A(pk,E1(pk,K), E2(K,m)) = 1]− P[A(pk,E1(pk, 0), E2(K,m)) = 1]‖ > ε1

Then there must exist one fixed K∗ such that

‖P[A(pk,E1(pk,K
∗), E2(K,m)) = 1]− P[A(pk,E1(pk, 0̂), E2(K,m)) = 1]‖ > ε1
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and then we define an algorithm A′ of complexity at most t such that:

‖P[A′(pk,E1(pk,K
∗)) = 1]− P[A′(pk,E1(pk, 0̂)) = 1]‖ > ε1

which contradicts the security of E1.

If (b) is true, then we define an algorithm A′′ of complexity at most t such that:

‖P[A′′(E2(K,m0)) = 1]− P[A′′(E2(K,m1)) = 1]‖ > ε2

which contradicts the security of E2.

3 RSA

The RSA function has the same “syntax” of a public-key encryption scheme:

• Key generation: Pick two distinct prime numbers p, q, compute N := pq, and
find integers e, d such that

e · d ≡ 1 (mod ()p− 1) · (q − 1)

Set the public key to (N, e) and the private key to (N, d)

• “Encryption:” given x ∈ ZN and public key (N, e), output

ERSA(x, (N, e)) := xe mod N

• “Decryption:” given y ∈ ZN and secret key (N, d), output

DRSA(y, (N, d)) := yd mod N

It is a standard calculation using the Chinese remainder theorem and Fermat’s little
theorem that ERSA(·, (N, e)) and DRSA(·, (N, d)) are permutations over ZN , and they
are one the inverse of the other.

This is, however, not a secure encryption scheme because it is deterministic, and it
suffers from several weaknesses that can exploited in practice.

A conjectural way to turn RSA into a CPA-secure encryption scheme is to employ it
to encrypt plaintexts whose length is only about 1

2
logN , and then pad the plaintext

with 1
2

logN random bits before applying ERSA. (Other choices for the length of the
plaintext and the amount of randomness are possible, half-half is just an example.)
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The assumption that this padded-RSA is CPA secure is a very strong one. In the next
lecture we will see how to turn RSA into a CPA secure encryption scheme under the
minimal assumption that ERSA is hard to invert on a random input for an adversary
that knows the public key but not the secret key.
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