
U.C. Berkeley — CS276: Cryptography Handout N15
Luca Trevisan March 10, 2009

Notes for Lecture 15

Scribed by Siu-Man Chan, posted March 12, 2009

Summary

Given one way permutations (of which discrete logarithm is a candidate), we know
how to construct pseudorandom functions. Today, we are going to construct pseudo-
random permutations (block ciphers) from pseudorandom functions.

1 Pseudorandom Permutations

Recall that a pseudorandom function F is an efficient function : {0, 1}k × {0, 1}n →
{0, 1}n, such that every efficient algorithm A cannot distinguish well FK(·) from R(·),
for a randomly chosen key K ∈ {0, 1}k and a random function R : {0, 1}n → {0, 1}n.
That is, we want that AFK(·) behaves like AR(·).

Fx

K

FK(x)

A pseudorandom permutation P is an efficient function : {0, 1}k×{0, 1}n → {0, 1}n,
such that for every key K, the function PK mapping x 7→ PK(x) is a bijection.
Moreover, we assume that given K, the mapping x 7→ PK(x) is efficiently invertible
(i.e. P−1

K is efficient). The security of P states that every efficient algorithm A cannot
distinguish well 〈PK(·), P−1

K (·)〉 from 〈Π(·),Π−1(·)〉, for a randomly chosen key K ∈
{0, 1}k and a random permutation Π: {0, 1}n → {0, 1}n. That is, we want that

APK(·),P−1
K (·) behaves like AΠ(·),Π−1(·).

We note that the algorithm A is given access to both an oracle and its (supposed)
inverse.

1



Px

K

PK(x) P−1y

K

P−1
K (y)

2 Feistel Permutations

Given any function F : {0, 1}m → {0, 1}m, we can construct a permutationDF : {0, 1}2m →
{0, 1}2m using a technique named after Horst Feistel. The definition of DF is given
by

DF (x, y) := y, F (y)⊕ x, (1)

where x and y are m-bit strings. Note that this is an injective (and hence bijective)
function, because its inverse is given by

D−1
F (z, w) := F (z)⊕ w, z. (2)

F

L

R

⊕ R

F (R)⊕ L

F

⊕

L

R

Also, note that DF and D−1
F are efficiently computable given F .

However, DF needs not be a pseudorandom permutation even if F is a pseudorandom
function, because the output of DF (x, y) must contain y, which is extremely unlikely
for a truly random permutation.

To avoid the above pitfall, we may want to repeat the construction twice. We pick
two independent random keys K1 and K2, and compose the permutations P (·) :=
DFK2

(DFK1
(·)).

Indeed, the output does not always contain part of the input. However, this construc-
tion is still insecure, no matter whether F is pseudorandom or not, as the following
example shows.

Here, 0 denotes the all-zero string of length m, 1 denotes the all-one string of length
m, and F (·) is FK1(·). This shows that, restricting to the first half, P (00) is the
complement of P (10), regardless of F .

What happens if we repeat the construction three times? We still do not get a
pseudorandom permutation.

2



FK1

L

R

⊕

FK2

⊕

FK1

0

0

⊕

0⊕ F (0)

FK2

⊕ 0⊕ F (0)

FK1

1

0

⊕

1⊕ F (0)

FK2

⊕ 1⊕ F (0)

Exercise 1 (Not Easy) Show that there is an efficient oracle algorithm A such that

P
Π:{0,1}2m→{0,1}2m

[AΠ,Π−1

= 1] = 2−Ω(m)

where Π is a random permutation, but for every three functions F1, F2, F3, if we define
P (x) := DF3(DF2(DF1(x))) we have

AP,P−1

= 1

Finally, however, if we repeat the construction four times, with four independent
pseudorandom functions, we get a pseudorandom permutation.

3 The Luby-Rackoff Construction

Let F : {0, 1}k × {0, 1}m → {0, 1}m be a pseudorandom function, we define the
following function P : {0, 1}4k × {0, 1}2m → {0, 1}2m: given a key K = 〈K1, . . . , K4〉
and an input x,

PK(x) := DFK4
(DFK3

(DFK2
(DFK1

(x)))). (3)

3



FK1

L0

R0

⊕

FK2

L1

R1

⊕

FK3

L2

R2

⊕

FK4

L3

R3

⊕ L4

R4

It is easy to construct the inverse permutation by composing their inverses backwards.

Theorem 1 (Pseudorandom Permutations from Pseudorandom Functions)
If F is a (O(tr), ε)-secure pseudorandom function computable in time r, then P is a
(t, 4ε+ t2 · 2−m + t2 · 2−2m) secure pseudorandom permutation.

4 Analysis of the Luby-Rackoff Construction

Given four random functions R = 〈R1, . . . , R4〉, Ri : {0, 1}m → {0, 1}m, let PR be the
analog of Construction (3) using the random function Ri instead of the pseudorandom
functions FKi

,

PR(x) = DR4(DR3(DR2(DR1(x)))) (4)

We prove Theorem 1 by showing that

1. PK is indistinguishable from PR or else we can break the pseudorandom function

2. PR is indistinguishable from a random permutation

The first part is given by the following lemma, which we prove via a standard hybrid
argument.

Lemma 2 If F is a (O(tr), ε)-secure pseudorandom function computable in time r,
then for every algorithm A of complexity ≤ t we have∣∣∣∣P

K

[APK ,P−1

K () = 1] − P
R

[APR,P−1

R () = 1]

∣∣∣∣ ≤ 4ε (5)

And the second part is given by the following lemma:

4



Lemma 3 For every algorithm A of complexity ≤ t we have∣∣∣∣P
R

[APR,P−1

R () = 1]− P
Π

[AΠ,Π−1

() = 1]

∣∣∣∣ ≤ t2

22m
+

t2

2m

where Π : {0, 1}2m → {0, 1}2m is a random permutation.

We now prove Lemma 2 using a hybrid argument.

Proof: Consider the following five algorithms from {0, 1}2m to {0, 1}2m:

• H0: pick random keys K1, K2, K3, K4,
H0(·) := DFK4

(DFK3
(DFK2

(DFK1
(·))));

• H1: pick random keys K2, K3, K4 and a random function F1 : {0, 1}m →
{0, 1}m,
H1(·) := DFK4

(DFK3
(DFK2

(DF1(·))));

• H2: pick random keys K3, K4 and random functions F1, F2 : {0, 1}m → {0, 1}m,
H2(·) := DFK4

(DFK3
(DF2(DF1(·))));

• H3: pick a random key K4 and random functions F1, F2, F3 : {0, 1}m → {0, 1}m,
H3(·) := DFK4

(DF3(DF2(DF1(·))));

• H4: pick random functions F1, F2, F3, F4 : {0, 1}m → {0, 1}m,
H4(·) := DF4(DF3(DF2(DF1(·)))).

Clearly, referring to (5), H0 gives the first probability of using all pseudorandom func-
tions in the construction, and H4 gives the second probability of using all completely
random functions. By triangle inequality, we know that

∃i
∣∣∣P[AHi,H

−1
i = 1]− P[AHi+1,H−1

i+1 = 1]
∣∣∣ > ε. (6)

We now construct an algorithm A′G(·) of complexity O(tr) that distinguishes whether
the oracle G(·) is FK(·) or a random function R(·).

• The algorithm A′ picks i keys K1, K2, . . . , Ki and initialize 4− i− 1 data struc-
tures Si+2, . . . , S4 to ∅ to store pairs.

• The algorithm A′ simulates AO,O−1
. Whenever A queries O (or O−1), the sim-

ulating algorithm A′ uses the four compositions of Feistel permutations, where

– On the first i layers, run the pseudorandom function F using the i keys
K1, K2, . . . , Ki;

– On the i-th layer, run an oracle G;

5



– On the remaining 4− i−1 layers, simulate a random function: when a new
value for x is needed, use fresh randomness to generate the random func-
tion at x and store the key-value pair into the appropriate data structure;
otherwise, simply return the value stored in the data structure.

When G is FK , the algorithm A′G behaves like AHi,H
−1
i ; when G is a random function

R, the algorithm A′G behaves like AHi+1,H−1
i+1 . Rewriting (6),∣∣∣P

K
[A′FK(·) = 1]− P

R
[A′R(·) = 1]

∣∣∣ > ε,

and F is not (O(tr), ε)-secure. �

We say that an algorithm A is non-repeating if it never makes an oracle query to
which it knows the answer. (That is, if A is interacting with oracles g, g−1 for some
permutation g, then A will not ask twice for g(x) for the same x, and it will not ask
twice for g−1(y) for the same y; also, after getting the value y = g(x) in an earlier
query, it will not ask for g−1(y) later, and after getting w = g−1(z) it will not ask for
g(w) later. )

We shall prove Lemma 3 for non-repeating algorithms. The proof can be extended
to arbitrary algorithms with some small changes. Alternatively, we can argue that
an arbitrary algorithm can be simulated by a non-repeating algorithm of almost the
same complexity in such a way that the algorithm and the simulation have the same
output given any oracle permutation.

In order to prove Lemma 3 we introduce one more probabilistic experiment: we
consider the probabilistic algorithm S(A) that simulates A() and simulates every
oracle query by providing a random answer. (Note that the simulated answers in the
computation of SA may be incompatible with any permutation.)

We first prove the simple fact that S(A) is close to simulating what really happen
when A interacts with a truly random permutation.

Lemma 4 Let A be a non-repeating algorithm of complexity at most t. Then∣∣∣∣P[S(A) = 1]− P
Π

[AΠ,Π−1

() = 1]

∣∣∣∣ ≤ t2

2 · 22m
(7)

where Π : {0, 1}2m → {0, 1}2m is a random permutation.

Finally, it remains to prove:

Lemma 5 For every non-repating algorithm A of complexity ≤ t we have∣∣∣∣P
R

[APR,P−1

R () = 1]− P[S(A) = 1]

∣∣∣∣ ≤ t2

2 · 22m
+

t2

2m

6



It is clear that Lemma 3 follows Lemma 4 and Lemma 5.

We now prove Lemma 4.∣∣∣∣P[S(A) = 1]− P
Π

[AΠ,Π−1

() = 1]

∣∣∣∣
6 P[when simulating S, get answers inconsistent with any permutation]

6
1

22m
(1 + 2 + · · ·+ t− 1)

=

(
t

2

)
1

22m

6
t2

2 · 22m
.

We shall prove Lemma 5 next time.

7


	Pseudorandom Permutations
	Feistel Permutations
	The Luby-Rackoff Construction
	Analysis of the Luby-Rackoff Construction

