
U.C. Berkeley — CS276: Cryptography Handout N11
Luca Trevisan February 24, 2009

Notes for Lecture 11

Scribed by Luca, posted March 10, 2009

Summary

Today we begin a tour of the theory of one-way functions and pseudorandomness.

The highlight of the theory is a proof that if one-way functions exist (with good
asymptotic security) then pseudorandom permutations exist (with good asymptotic
security). We have seen that pseudorandom permutations suffice to do encryption and
authentication with extravagantly high levels of security (respectively, CCA security
and existential unforgeability under chosen message attack), and it is easy to see that
if one-way functions do not exist, then every encryption and authentication scheme
suffers from a total break.

Thus the conclusion is a strong “dichotomy” result, saying that either cryptography
is fundamentally impossible, or extravagantly high security is possible.

Unfortunately the proof of this result involves a rather inefficient reduction, so the
concrete parameters for which the dichotomy holds are rather unrealistic. (One would
probably end up with a system requiring gigabyte-long keys and days of processing
time for each encryption, with the guarantee that if it is not CCA secure then every
128-bit key scheme suffers a total break.) Nonetheless it is one of the great unifying
achievements of the asymptotic theory, and it remains possible that a more effective
proof will be found.

In this lecture and the next few ones we shall prove the weaker statement that if one-
way permutations exist then pseudorandom permutations exist. This will be done
in a series of four steps each involving reasonable concrete bounds. A number of
combinatorial and number-theoretic problems which are believed to be intractable
give us highly plausible candidate one-way permutations. Overall, we can show that
if any of those well-defined and well-understood problems are hard, then we can get
secure encryption and authentication with schemes that are slow but not entirely
impractical. If, for example, solving discrete log with a modulus of the order of 21,000

is hard, then there is a CCA-secure encryption scheme requiring a 4, 000-bit key
and fast enough to carry email, instant messages and probably voice communication.
(Though probably too slow to encrypt disk access or video playback.)

1



1 One-way Functions and One-way Permutations

A one-way function f is a function such that, for a random x, it is hard to find a
pre-image of f(x).

Definition 1 (One-way Function) A function f : {0, 1}n → {0, 1}m is (t, ε)-one
way if for every algorithm A of complexity ≤ t we have

P
x∼{0,1}n

[A(f(x)) = x′ : f(x) = f(x′)] ≤ ε

In the asymptotic theory, one is interested in one-way functions that are defined for
all input lengths and are efficiently computable. Recall that a function ν : N→ R is
called negligible if for every polynomial p we have limn→∞ ν(n)/p(n) = 0.

Definition 2 (One-way Function – Asymptotic Definition) A function f : {0, 1}∗ →
{0, 1}∗ is one-way if

1. f is polynomial time computable and

2. for every polynomial p() there is a negligible function ν such that for all large
enough n the function fn(x) := (n, f(x)) is (t(n), ν(n))-one way.

Example 3 (Subset Sum) On input x ∈ {0, 1}n, where n = k · (k + 1), SSk(x)
parses x as a sequence of k integers, each k-bit long, plus a subset I ⊆ {1, . . . , k}.
The output is

SSk(x1, . . . , xk, I) := x1, . . . , xk,
∑
i∈I

xi

Some variants of subset-sum have been broken, but it is plausible that SSk is a (t, ε)-

one way function with t and 1/ε super-polynomial in k, maybe even as large as 2k
Ω(1)

.

Exercise 1 Let f : {0, 1}n → {0, 1}m be a (t, ε)-secure one-way function. Show that

t

ε
≤ O((m+ n) · 2n)

Definition 4 (One-way Permutation) If f : {0, 1}n → {0, 1}n is a bijective (t, ε)-
one way function, then we call f a (t, ε)-one-way permutation.

If f is an (asymptotic) one-way function, and for every n f is a bijection from {0, 1}n
into {0, 1}n, then we say that f is an (asymptotic) one-way permutation.

2



There is a non-trivial general attack against one-way permutations.

Exercise 2 Let f : {0, 1}n → {0, 1}m be a (t, ε)-secure one-way permutation. Show
that

t2

ε
≤ O((m+ n)2 · 2n)

This means that we should generally expect the input length of a secure one-way
permutation to be at least 200 bits or so. (Stronger attacks than the generic one are
known for the candidates that we shall consider, and their input length is usually
1000 bits or more.)

Example 5 (Modular Exponentiation) Let p be a prime, and Z∗p be the group
whose elements are {1, . . . , p− 1} and whose operation is multiplication modp. It is
a fact (which we shall not prove) that Z∗p is cyclic, meaning that there is an element
g such that the mapping

EXPg,p(x) := gx mod p

is a permutation on Z∗p. Such an element g is called a generator, and in fact most
elements of Z∗p are generators. EXPg,p is conjectured to be one-way for most choices
of p and g.

The problem of inverting EXPg,p is called the discrete logarithm problem.

The best known algorithm for the discrete logarithm is conjectured to run in time
2O((logp)1/3). It is plausible that for most p and most g the discrete logarithm is a (t, ε)

one way permutation with t and ε−1 of the order of 2(log p)Ω(1)
.

Problems like exponentiation do not fit well in the asymptotic definition, because of
the extra parameters g, p. (Technically, they do not fit our definitions at all because
the input is an element of Z∗p instead of a bit string, but this is a fairly trivial issue
of data representation.) This leads to the definition of family of one-way functions
(and permutations).

2 A Preview of What is Ahead

Our proof that a pseudorandom permutation can be constructed from any one-way
permutation will proceed via the following steps:

3



1. We shall prove that for any one-way permutation f we can construct a hard-core
predicate P , that is a predicate P such that P (x) is easy to compute given x,
but it is hard to compute given f(x).

2. From a one-way function with a hard-core predicate, we shall show how to
construct a pseudorandom generator with one-bit expansion, mapping ` bits
into `+ 1.

3. From a pseudorandom generator with one-bit expansion, we shall show how to
get generators with essentially arbitrary expansion.

4. From a length-doubling generator mapping ` bits into 2`, we shall show how to
get pseudorandom functions.

5. For a pseudorandom function, we shall show how to get pseudorandom permu-
tations.

3 Hard-Core Predicate

Definition 6 (Hard-Core Predicate) A boolean function P : {0, 1}n → {0, 1} is
(t, ε)-hard core for a permutation f : {0, 1}n → {0, 1}n if for every algorithm A of
complexity ≤ t

P
x∼{0,1}n

[A(f(x)) = P (x)] ≤ 1

2
+ ε

Note that only one-way permutations can have efficiently computable hard-core pred-
icates.

Exercise 3 Suppose that P is a (t, ε)-hard core predicate for a permutation f :
{0, 1}n → {0, 1}n, and P is computable in time r. Show that f is (t − r, 2ε)-one
way.

It is known that if Expg,p is one-way, then every bit of x is hard-core.

Our first theorem will be that a random XOR is hard-core for every one-way permu-
tation.

We will use the following notation for “inner product” modulo 2:

〈x, r〉 :=
∑
i

xiri mod 2 (1)

4



Theorem 7 (Goldreich and Levin) Suppose that A is an algorithm of complexity
t such that

P
x,r

[A(f(x), r) = 〈x, r〉] ≥ 1

2
+ ε (2)

Then there is an algorithm A′ of complexity at most O(tε−2nO(1)) such that

P
x
[A′(f(x)) = x] ≥ Ω(ε)

We begin by establishing the following weaker result.

Theorem 8 (Goldreich and Levin – Weak Version) Suppose that A is an algo-
rithm of complexity t such that

P
x,r

[A(f(x), r) = 〈x, r〉] ≥ 15

16
(3)

Then there is an algorithm A′ of complexity at most O(tn log n+ n2 log n) such that

P
x
[A′(f(x)) = x] ≥ 1

3

Before getting into the proof of Theorem 8, it is useful to think of the “super-weak”
version of the Goldreich-Levin theorem, in which the right-hand-side in (3) is 1. Then
inverting f is very easy. Call ei ∈ {0, 1}n the vector that has 1 in the i-th position and
zeroes everywhere else, thus 〈x, ei〉 = xi. Now, given y = f(x) and an algorithm A for
which the right-hand-side of (3) is 1, we have xi = A(y, ei) for every i, and so we can
compute x given f(x) via n invocations of A. In order to prove the Goldreich-Levin
theorem we will do something similar, but we will have to deal with the fact that we
only have an algorithm that approximately computes inner products.

We derive the Weak Goldreich-Levin Theorem from the following reconstruction al-
gorithm.

Lemma 9 (Goldreich-Levin Algorithm – Weak Version) There is an algorithm
GLW that given oracle access to a function H : {0, 1}n → {0, 1}n such that, for some
x ∈ {0, 1}n,

P
r∼{0,1}n

[H(r) = 〈x, r〉] ≥ 7

8

runs in time O(n2 log n), makes O(log n) queries into H, and with 1−o(1) probability
outputs x.

5



Before proving Lemma 9, we need to state the following version of the Chernoff
Bound.

Lemma 10 (Chernoff Bound) Let X1, . . . , Xn be mutually independent 0/1 ran-
dom variables. Then, for every ε > 0, we have

P

[
n∑
i=1

Xi > E
n∑
i=1

Xi + εn

]
≤ e−2ε2n (4)

Proof: We only give a sketch. Let Yi := Xi − EXi. Then we want to prove that

P

[∑
i

Yi > εn

]
≤ e−2ε2n

For every fixed λ, Markov’s inequality gives us

P

[∑
i

Yi > εn

]
= P

[
eλ

P
i Yi > eλεn

]
≤ E eλ

P
i Yi

eλεn

We can use independence to write

E eλ
P

i Yi =
∏
i

E eλYi

and some calculus shows that for every Yi we have

E eλYi ≤ eλ
2/8

So we get

P

[∑
i

Yi > εn

]
≤ eλ

2n/8−λεn (5)

Equation (5) holds for every λ > 0, and in particular for λ := 4ε giving us

P

[∑
i

Yi > εn

]
≤ e−2ε2n

as desired. �

6



We can proceed with the design and the analysis of the algorithm of Lemma 9.

Proof:[Of Lemma 9] The idea of the algorithm is that we would like to compute
〈x, ei〉 for i = 1, . . . , n, but we cannot do so by simply evaluating H(ei), because it
is entirely possible that H is incorrect on those inputs. If, however, we were just
interested in computing 〈x, r〉 for a random r, then we would be in good shape,
because H(r) would be correct with resonably large probability. We thus want to
reduce the task of computing 〈x, y〉 on a specific y, to the task of computing 〈x, r〉 for
a random r. We can do so by observing the following identity: for every y and every
r, we have

〈x, y〉 = 〈x, r + y〉 − 〈x, r〉

where all operations are mod 2. (And bit-wise, when involving vectors.) So, in order
to compute 〈x, y〉 we can pick a random r, and then compute H(r + y)−H(r). If r
is uniformly distributed, then H(r + y) and H(r) are uniformly distributed, and we
have

P
r∼{0,1}n

[H(r + y)−H(r) = 〈x, y〉]

≥ P
r∼{0,1}n

[H(r + y) = 〈x, r + y〉 ∧H(r) = 〈x, r〉]

= 1− P
r∼{0,1}n

[H(r + y) 6= 〈x, r + y〉 ∨H(r) 6= 〈x, r〉]

≥ 1− P
r∼{0,1}n

[H(r + y) 6= 〈x, r + y〉]− P
r∼{0,1}n

[H(r) 6= 〈x, r〉]

≥ 3

4

Suppose now that we pick independently several random vectors r1, . . . , rk, and that
we compute Yj := H(rj + y)−H(rj) for j = 1, . . . , k and we take the majority value
of the Yj as our estimate for 〈x, y〉. By the above analysis, each Yj equals 〈x, y〉 with
probability at least 3/4; furthermore, the events Yj = 〈x, y〉 are mutually independent.
We can then invoke the Chernoff bound to deduce that the probability that the
majority value is wrong is at most e−k/8. (If the majority vote of the Yj is wrong,
it means that at least k/2 or the Yj are wrong, even though the expected number of
wrong ones is at most k/4, implying a deviation of k/4 from the expectation; we can
invoke the Chernoff bound with ε = 1/4.) The algorithm GLW is thus as follows:

• Algorithm GLW

• for i := 1 to n

– for j := 1 to 16 log n

7



∗ pick a random rj ∈ {0, 1}n

– xi := majority{H(rj + ei)−H(ei) : j = 1, . . . , 16 log n}

• return x

For every i, the probability fails to compute 〈x, ei〉 = xi is at most e−2 logn = 1/n2.
So the probability that the algorithm fails to return x is at most 1/n = o(1). The
algorithm takes time O(n2 log n) and makes 32n log n oracle queries into H. �

In order to derive Theorem 8 from Lemma 9 we will need the following variant of
Markov’s inequality.

Lemma 11 Let X be a discrete bounded non-negative random variable ranging over
[0, 1]. Then for every 0 ≤ t ≤ EX,

P[X ≥ t] ≥ EX − t
1− t

(6)

Proof: Let R be the set of values taken by X with non-zero probability. Then

EX =
∑
v∈R

v · P[X = v]

=
∑

v∈R:v<t

v · P[X = v] +
∑

v∈R:v≥t

v · P[X = v]

≤
∑

v∈R:v<t

t · P[X = v] +
∑

v∈R:v≥t

1 · P[X = v]

= t · P[X < t] + P[X ≥ t]

= t− t · P[X ≥ t] + P[X ≥ t]

So we have P[X ≥ t] · (1− t) ≥ EX − t. �

We can now prove Theorem 8.

Proof:[Of Theorem 8] The assumption of the Theorem can be rewritten as

E
x

[
P
r
[A(f(x), r) = 〈x, r〉]

]
≥ 15

16

From Lemma 11 we have

P
x

[
P
r
[A(f(x), r) = 〈x, r〉] ≥ 7

8

]
≥ 1

2

8



Call an x “good” if it satisfies Pr[A(f(x), r) = 〈x, r〉].
The inverter A′, on input y = f(x), runs the algorithm GLW using the oracle A′(y, ·).
If x is good, then the algorithm finds x with probability at least 1 − o(1). At least
half of the choices of x are good, so overall the algorithm inverts f() on at least a
.5 − o(1) > 1/3 fraction of inputs. The running time of the algorithm if O(n2 log n)
plus the cost of 32n log n calls to A(y, ·), each costing time t. �

9


	One-way Functions and One-way Permutations
	A Preview of What is Ahead
	Hard-Core Predicate

