U.C. Berkeley — CS276: Cryptography Handout N10 (Draft)
Luca Trevisan February 19, 2009

Notes for Lecture 10 (Draft)

Summary

Cryptographic hash functions, as defined last time, have various application. Their
use for message authentication is common, but, unless it is carefully designed, it can
lead to insecure systems.

We conclude the lecture with an overview of how the current standard pseudorandom
permutation (AES) works. Next time we begin a study of how to construct pseudo-
random permutations (and hence secure MACs and CCA-secure encryption) starting
from well-understood assumptions such as the hardness of factoring or discrete log.

1 Hash Functions and Authentication

Suppose H : {0,1}* x {0,1}?* — {0,1}* is a collision-resistant hash function and
Hyp @ {0,1}% x {0,1}* — {0,1}* is the hash function derived from the Merkle-
Damgard transform.

Two popular schemes for message authentication involve using a key K € {0,1}¢, and
authenticating a message M as either

1. H3;p(K, M) or
2. H3,p (M, K).

The first scheme has a serious problem: given the tag of a message M,..., Mg of
length ¢, we can compute the tag of any message that starts with My, ..., Mg, L.

The NMAC scheme works roughly as a scheme of the second type, but with two keys,
the first used in place of IV in the Merkle-Damgard transform, the second put at the
end of the message.

This is secure assuming that H*(K, M) (where H is the fixed-length hash function)
is a secure MAC for fixed length messages.

An alternative scheme (which is easier to implement given current cryptographic
libraries) is HMAC, which uses H*(IV, K @ ipad) as a first key and H*(IV, K @ opad)



as a second key, where ipad and opad are two fixed strings. This is secure if, in
addition to the assumptions that make NMAC secure, we have that the mapping

s, K — s, H*(IV, K @ ipad), H*(IV, K @ opad)

is a pseudorandom generator.

2 The AES Pseudorandom Permutation

AES is a pseudorandom permutation with m = 128 and k£ = 128, 192 or 256. It was
the winner of a competition run by NIST between 1997 and 2000 to create a new
encryption standard to replace DES (which had k£ = 56 and was nearly broken by
that time).

The conjectured security of practical pseudorandom permutations such as AES does
not rely on the hardness of a well-defined computational problem, but rather on a
combination of design principles and of an understanding of current attack strategies
and of methods to defy them.

AES keeps a state, which is initially equal to the input, which is a 4 x 4 matrix of
bytes. The states is processed in 4 stages. This processing is done 10, 12, or 14 times
(depending on key length), and the final state is the output.

1. In the first stage, a 128-bit string derived from the key (and dependent on the
current round) is added to the state. This is the only stage that depends on
the key;

2. A fixed bijection (which is part of the specification of AES) p : {0,1}® — {0,1}8
is applied to each byte of the state

3. The rows of the matrix are shifted (row i is shifted ¢ — 1 places)
4. An invertible linear transformation (over the field GF(256)) is applied to the

matrix

The general structure is common to other conjecturally secure pseudorandom permu-
tations:

e There is one (or more) small “random-like” permutations that are hard-wired
in the construction, such as p : {0,1}® — {0,1}® in AES. Traditionally, those
hard-wired functions are called “S-boxes.”



e A “key-scheduler” produces several “pseudorandom” strings from the key. (Usu-
ally, the scheduler is not a true pseudorandom generator, but does something
very simple.)

e The construction proceeds in several rounds. At each round there is some
combination of:

— “Confuse:” apply the hard-wired S-boxes locally to the input (Stage 1 in
AES)

— “Diffuse:” rearrange bits so as to obscure the local nature of the application
of the S-boxes (Stages 3 and 4 in AES)

— “Mix:” use a string produced by the key-scheduler to add key-dependent
randomness to the input (Stage 2 in AES)



	Hash Functions and Authentication
	The AES Pseudorandom Permutation

