
U.C. Berkeley — CS276: Cryptography Handout N9
Luca Trevisan February 17, 2009

Notes for Lecture 9

Notes scribed by Joel Weinberger, posted March 1, 2009

Summary

Last time, we showed that combining a CPA-secure encryption with a secure MAC
gives a CCA-secure encryption scheme. Today we shall see that such a combination
has to be done carefully, or the security guarantee on the combined encryption scheme
will not hold.

We then begin to talk about cryptographic hash functions, and their construction via
the Merkle-Damg̊ard transform.

1 Combining Encryption and Authentication

1.1 Encrypt-Then-Authenticate

Let (E,D) be an encryption scheme and (Tag, V) be a MAC.

Last time we considered their encrypt-then-authenticate combination defined as fol-
lows:

Construction (E1, D1)

• Key: a pair (K1, K2) where K1 is a key for (E,D) and K2 is a key for (Tag, V)

• E1((K1, K2),M):

– C := E(K1,M)

– T := Tag(K2, C)

– return (C, T)

• D1((K1, K2), (C, T):

– if V (K2, C, T) then return D(K1, C)

– else return ’ERROR’

and we proved that if (E,D) is CPA-secure and (Tag, V) is existentially unforgeable
under a chosen message attack then (E1, D1) is CCA-secure.

Such a result is not provable if (E,D) and (Tag, V) are combined in different ways.

1

1.2 Encrypt-And-Authenticate

Consider the following alternative composition:

Construction (E2, D2)

• Key: a pair (K1, K2) where K1 is a key for (E,D) and K2 is a key for (Tag, V)

• E2((K1, K2),M) := E(K1,M), Tag(K2,M)

• D2((K1, K2), (C, T):

– M := D(K1, C)

– if V (K2,M, T) then return M

– else return ’ERROR’

The problem with this construction is that a MAC (Tag, V) can be secure even
if Tag() is deterministic. (E.g. CBC-MAC.) But if the construction (E2, D2) is
instantiated with a deterministic Tag(), then it cannot even guarantee security for 2
encryptions (much less CPA-security or CCA security).

A more theoretical problem with this construction is that a MAC (Tag, V) can be
secure even if Tag(K,M) completely gives away M , and in such a case (E2, D2) is
completely broken.

1.3 Authenticate-Then-Encrypt

Finally, consider the following scheme:

Construction (E3, D3)

• Key: a pair (K1, K2) where K1 is a key for (E,D) and K2 is a key for (Tag, V)

• E3((K1, K2),M) :

– T := Tag(K2,M)

– return E(K1, (M,T))

• D3((K1, K2), C:

– (M,T) := D(K1, C)

– if V (K2,M, T) then return M

– else return ’ERROR’

2

The problem with this construction is rather subtle.

First of all, the major problem of the construction (E2, D2), in which we lost even
security for two encryptions, does not occur.

Exercise 1 Show that if (E,D) is (t, ε) CPA-secure and E,D, Tag, V all have run-
ning time at most r, then (E3, D3) is (t/O(r), ε) CPA secure

It is possible, however, that (E,D) is CPA-secure and (Tag, V) is existentially un-
forgeable under chosen message attack, and yet (E3, D3) is not CCA-secure.

Suppose that (Tag, V) is such that, in Tag(K,M), the first bit is ignored in the
verification. This seems reasonable in the case that some padding is needed to fill
out a network protocol, for example. Further, suppose (E,D) is counter mode with
a pseudo-random function, FK1 .

Take the encryption of M1, ...,Ml with keys K1 and K2 for E and V , respectively.
Pick a random r. Then, by the definition of the encryption scheme in counter mode,
the encryption of E, T will be:

r, FK1(r)⊕M1, FK1(r+1)⊕M2, ..., FK1(r+l−1)⊕Ml, FK1(r+l)⊕T1, FK1(r+l+1)⊕T2, ...

Consider this CCA attack. Let e1 = (1, 0, ..., 0). The attacker sees

r, C1, C2, ..., Cl, Cl+1, ..., Cl+c

Take e1 ⊕ Cl+1 (or any of the other tags). Clearly, this is not the original message
encryption, as a bit has been changed, so the Oracle will give you a decryption of
it in a CCA attack. Since all that was modified in the ciphertext was the first bit,
which was padding, the attacker has just used the Oracle to get the original message.

2 Cryptographic Hash Functions

2.1 Definition and Birthday Attack

Definition 1 (Collision-Resistant Hash Function) A function H : {0, 1}k×{0, 1}L →
{0, 1}` is a (t, ε) secure collision resistant hash function if L > ` and for every algo-
rithm A of complexity ≤ t we have

P[A(s) = (x, x′) : Hs(x) = Hs(x′)] ≤ ε (1)

3

The idea is that, for every key (or seed) s ∈ {0, 1}k we have a length-decreasing
function Hs : {0, 1}L → {0, 1}`. By the pigeon-hole principle, such functions cannot
be injective. An efficient algorithm, however, cannot find collisions (pairs of inputs
that produce the same output) even given the seed s.

The main security parameter in a construction of collision-resistent hash functions
(that is, the parameter that one needs to increase in order to hope to achieve larger
t and smaller ε) is the output length `.

It is easy to see that if H has running time r and output length ` then we can find
collisions in time O(r · 2`) by computing values of H in any order until we find a
collision. (By the pigeon-hole principle, a collision will be found in 2` + 1 attempts
or fewer.)

If, specifically, we attack H by trying a sequence of randomly chosen inputs until we
find a collision, then we can show that with only 2`/2 attempts we already have a
constant probability of finding a collision. (The presence of a collision can be tested
by sorting the outputs. Overall, this takes time O(2`/2 · `+ 2`/2 · r) = O(r ·2`/2).) The
calculation can be generalized to the following:

Consider A given Hs(·). Define A as picking m random strings x1...xm and generating
their respective outputs from Hs. We want to check the probability P[collision] that
Hs(x1)...H

s(xm) contains a repeated value. However, it is easier to begin by checking
the probability of whether the m choices do not contain a collision, P[no collision]:

P[no collision] = 1 ·
(

1− 1

2`

)
·
(

1− 2

2`

)
· · ·

(
1− (m− 1)

2`

)
P[collision] = 1− P[no collision]

≈ e−P[no collision]

= e−
1

2` · e−
2

2` · ... · e−
(m−1)

2`

= e−
1+2+...+(m−1)

2`

≈ e−
m2

2`+1

Note that this is a constant if m ≈ 2`/2.

(This calculation is called the “birthday paradox,” because it establishes that in a
set of n elements uniformly distributed, if you pick elements x1...x√n, where xi is
uniformally distributed in the set and xi is independent, then there is a constant
probability that ∃i, j : xi = xj. Specifically, in the case of birthdays, if there are 23
people in a room, then there is a probability over 1

2
that two of the people in the

room have the same birthday.)

Exercise 2 If H : {0, 1}k×{0, 1}L → {0, 1}` is a (t, ε) secure collision resistant hash

4

function computable in time r, then

t2

ε
≤ O(r · 2`) (2)

This should be contrasted with the case of pseudorandom generators and pseudoran-
dom functions, where the security parameter is the seed (or key) length k, and the
only known generic attack is the one described in a previous exercise which gives

t

ε
≤ O(m2`) (3)

This means that if one wants a (t, ε) secure pseudorandom generator or function
where, say, t = 280 and ε = 2−40, then it is somewhat plausible that a key of 128
bits might suffice. The same level of security for a collision-resistant hash function,
however, requires a key of at least about 200 bits.

To make matters worse, attacks which are significantly faster than the generic birth-
day attack have been found for the two constructions of hash functions which are
most used in practice: MD5 and SHA-1. MD5, which has ` = 128, is completely
broken by such new attacks. Implementing the new attacks on SHA-1 (which has
` = 160) is not yet feasible but is about 1,000 times faster than the birthday attack.

There is a process under way to define new standards for collision-resistant hash
functions.

2.2 The Merkle-Damg̊ard Transform

In practice, it is convenient to have collision-resistant hash functions H : {0, 1}k ×
{0, 1}∗ → {0, 1}` in which the input is allowed to be (essentially) arbitrarily long.

The Merkle-Damg̊ard transform is a generic way to transform a hash function that
has L = 2` into one that is able to handle messages of arbitrary length.

Let H : {0, 1}k × {0, 1}2` → {0, 1}` a hash functions that compresses by a factor of
two.

Then Hs
MD(M) is defined as follows (IV is a fixed `-bit string, for example the all-zero

string):

• Let L be the length of M

• divide M into blocks M1, . . . ,MB of length `, where B = dL/`e

• h0 := IV

5

• for i := 1 to B : hi := Hs(Mi, hi−1)

• return Hs(L, hB)

We can provide the following security analysis:

Theorem 2 If H is (t, ε)-secure and has running time r, then HMD has security
(t−O(rL/`), ε) when used to hash messages of length up to L.

Proof:

Suppose that A, given s, has a probability ε of finding messages M,M ′ where M =
M1, ...,MB,M

′ = M ′
1, ...,M

′
B and Hs

MD(M) = Hs
MD(M ′), where B = L/`,B′ = L′/`.

Let us construct an algorithm A′ which:

1. Given s, runs A to find collisions for M,M ′ in Hs
MD. Assume that running A

takes time tMD.

2. Computes both Hs
MD(M)andHs

MD(M ′). We know that this takes time on the
order of r · 2L/`, where r is the time of running Hs and assuming without loss
of generality that L ≥ L′ since the Merkle-Damg̊ard Transform, by definition,
runs Hs once for each of the L/` blocks of M and M ′.

3. Finds a collision of Hs that is guaranteed to exist (we will prove this below) in
the Merkle-Damg̊ard algorithm. This will take the time of running the algorithm
once for each message M,M ′, which is on the order of r · 2L/`, as above.

In order to show that there must be a collision in Hs if there is a collision in Hs
MD,

recall that the last computation of the MD algorithm hashes MB+1 = L. We need
to consider two cases:

1. L 6= L′: By the definition of the problem, we have Hs
MD(M) = Hs

MD(M ′). The
last step of the alrogithm for M and M ′ generates, respectively, Hs(L, hB) =
Hs

MD(M) and Hs(L′, h′B′) = Hs
MD(M ′) = Hs

MD(M). This is a collision of Hs

on different inputs.

2. L = L′: This implies that B = B′ and hB+1 = h′B′+1, as well. Because M 6= M ′

but |M | 6= |M ′|, ∃i, 0 ≤ i ≤ B : hi 6= h′i.

Let j ≤ B + 1 be the largest index where hj 6= h′j. If j = B + 1, then hj+1 and
h′j+1 are two (different) colliding strings because Hs(hj) = hj+1 = Hs

MD(M) =
Hs

MD(M ′) = h′j+1 = Hs(h′j).

If j ≤ B, then that implies hj+1 = h′j+1. Thus, hj and h′j are two different
strings whose hashes collide.

6

This shows that a collision in Hs
MD implies a collision in Hs, thus guaranteeing for

our proof that by executing each stage of the Merkle-Damg̊ard Transform, we can
find a collision in Hs if there is a collision in Hs

MD.

Returning to algorithm A′, we now have established the steps necessary to find colli-
sions of a hash function Hs by finding collisions in Hs

MD. Note that by the definition
of the problem, because it uses algorithm A which finds collisions with probability ε,
A′ will also find collisions with probability ε. By the definition of a collision-resistant
hash function, we also know that it must have time complexity t.

Examining the steps of the algorithm, we know that the time complexity of A is
t = tMD + 2r · L/` + 2r · L/` = 4r · L/` = tMD + O(rL/`). From this, we solve for
tMD and get tMD = t − O(rL/`). Thus, we conclude that if A finds a collision with
probability ε, it is (t−O(RL/`), ε) secure.

�

7

	Combining Encryption and Authentication
	Encrypt-Then-Authenticate
	Encrypt-And-Authenticate
	Authenticate-Then-Encrypt

	Cryptographic Hash Functions
	Definition and Birthday Attack
	The Merkle-Damgård Transform

