
U.C. Berkeley — CS276: Cryptography Handout N8
Luca Trevisan February 12, 2009

Notes for Lecture 8

Scribed by James Cook, posted February 18, 2009

Summary

Last time we described a secure MAC (message authentication code) based on pseu-
dorandom functions. Its disadvantage was the length of the tag, which grew with the
length of the message.

Today we describe the CBC-MAC, also based on pseudorandom functions, which has
the advantage of short tags. We skip its security analysis.

Next, we show that combining a CPA-secure encryption with a secure MAC gives a
CCA-secure encryption scheme.

1 CBC-MAC

Suppose we have a pseudorandom function F : {0, 1}k × {0, 1}m → {0, 1}m.

Last time we described a provably secure MAC in which a message M is broken up
into blocks M1, . . . ,M`, each of length m/4, and the tag of M is the sequence

(r, FK(r, `, 1,M1), FK(r, `, 2,M2), . . . , FK(r, `, `,M`))

where r is a random string and K is the key of the authentication scheme. Jonah
suggested a more compact scheme, in which M is broken into blocks M1, . . . ,M` of
length m/3 and the tag is

(r, FK(r, 0, 1,M1), FK(r, 0, 2,M2), . . . , FK(r, 1, `,M`))

for a random string r. That is, the length of the message is not explicitly authenticated
in each block, but we authenticate a single bit that says whether this is, or isn’t, the
last block of the message.

Exercise 1 Prove that if F is (t, ε)-secure then this scheme is (t/O(`m), ε+t2·2−m/3+
2−m)-secure, where ` is an upper bound to the number of blocks of the message that
we are going to authenticate.

1



A main disadvantage of such schemes is the length of the final tag.

The CBC-MAC scheme has the advantage of producing a tag whose length is only
m.

CBC-MAC scheme:

M1

��

M2

��

M`

��
` // FK

// ⊕ // FK
// ⊕ // · · · // ⊕ // FK

// T

• Tag(K,M1, . . . ,M`) :

– T0 := FK(`)

– for i := 1 to `: Ti := FK(Ti−1 ⊕Mi)

– return T`

• V erify(K,M, T ) : check that Tag(K,M) == T

This scheme is similar to in structure to CBC encryption:

M1

��

M2

��

M3

��
r // FK

// ⊕ // FK
//

!!CC
CC

CC
CC

⊕ // FK
//

!!CC
CC

CC
CC

⊕ // · · ·

C1 C2

We will not prove CBC-MAC to be secure, but the general approach is to show that
all the inputs to FK are distinct with high probability.

2 Combining MAC and Encryption

Suppose that we have an encryption scheme (E,D) and a MAC (T, V ). We can
combine them to produce the following encryption scheme, in which a key is made of
pair (K1, K2) where K1 is a key for (E,D) and K2 is a key for (T, V ):

• E ′((K1, K2),M) :

– C := E(K1,M)

– T := T (K2, C)

– return (C, T )

2



• D′((K1, K2), (C, T ):

– if V (K2, C, T ) : return D(K1, C)

– else return ERROR

The scheme (E ′, D′) is an encrypt-then-authenticate scheme in which we first encrypt
the plaintext with key K1 and then authenticate the ciphertext with key K2. The
decryption aborts if given an incorrectly tagged ciphertext.

The idea of this scheme is that an adversary mounting a CCA attack (and hence
having access to both an encryption oracle and a decryption oracle) has no use for the
decryption oracle, because the adversary already knows the answer that the decryption
oracle is going to provide for each oracle query:

1. if the adversary queries a ciphertext previously obtained from the encryption
oracle, then it already knows the corresponding plaintext

2. if the adversary queries a ciphertext not previously obtained from the encryption
oracle, then almost surely (assuming the security of the MAC), the tag in the
ciphertext will be incorrect, and the oracle answer is going to be “ERROR”

This intuition is formalized in the proof of the following theorem.

Theorem 1 If (E,D) is (t, ε) CPA secure, and (T, V ) is (t, ε/t) secure, then (E ′, D′)
is (t/(r + O(`)), 3ε) CCA secure, where r is an upper bound to the running time of
the encryption algorithm E and the tag algorithm T , and ` is an upper bound to the
length of the messages that we encrypt.

Proof: Suppose (E ′, D′) is not CCA-secure. Then there exist an algorithm A′ of
complexity t′ ≤ t/(r +O(`)) and two messages M1 and M2 such that

|P[A′E
′,D′

(E ′(M1)) = 1]− P[A′E
′,D′

(E ′(M2)) = 1]| > 3ε (1)

(In (1), E ′() and D′() should take keys (K1, K2) as input; we have omitted the keys
to simplify notation.)

Without loss of generality, we assume A′ never queries D′ on any ciphertext previously
returned by E ′. We can make this assumption because we can modify A′ to keep a
record of all the queries it makes to E ′, and to use the record to avoid redundant
queries to D′.

We now wish to convert A′ to a new algorithm A1 such that

∀M P
K

[AEK
1 (EK(M)) = 1] ≈ P

K1,K2

[A
′E′

(K1,K2)
,D′

(K1,K2)(E ′(K1,K2)(M))].

3



Note that A′ is given the oracles E ′ and D′, but A1 is given as an oracle just the
original CPA-secure encryption algorithm E.

Define

• AE
1 (C):

– pick a random key K ′2

– T := T (K ′2, C)

– simulate A′O1,O2(C, T ) with these oracles:

∗ O1(M) returns E ′((K1, K
′
2),M);

∗ O2 always returns ERROR.

A1 has to run the tagging algorithm T , which has complexity r, every time A′ makes
an oracle call. Since A′ has complexity at most t/r, A1 has complexity at most t.

Now, assuming the attack A′ works, we can apply the triangle inequality to (1) to
obtain:

3ε < |P[A′E
′,D′

(E ′(M1)) = 1]− P[AE
1 (E(M1)) = 1]| (2)

+|P[AE
1 (E(M1) = 1]− P[AE

1 (E(M2) = 1]| (3)

+|P[AE
1 (E(M2) = 1]− P[A′E

′,D′
(E ′(M2) = 1]| (4)

One of (2), (3) or (4) must be greater than ε.

If (3) > ε, then algorithm A1 breaks the CPA-security of E. We assumed E was
CPA-secure, so one of (2) or (4) must be greater than ε. In either case, there exists
a message M with the property that

| P
K

[AE
1 (E(M)) = 1]− P

K1,K2

[A′E
′,D′

(E ′(M)) = 1]| > ε. (5)

If when A1 is simulating A′, A′ never makes a call to D′ which results in an output
other than “ERROR”, then A1 behaves exactly as A′ would with the same key K2.
So (5) implies that with probability greater than ε, A′E

′,O′
(E ′(M)) makes a call to

the decryption oracle resulting in an output other than “ERROR”. This means A′

manages to generate valid messages that it has never seen before, and we can use this
fact to define an algorithm A2 that breaks the Message Authentication Code (T, V ).

A′E
′,D′

makes at most t oracle queries to D′, and with probability ε, at least one of
those results in an output other than “ERROR”. There must exist a number i such
that with probability at least ε/t, the i-th query A′E

′,D′
makes to D′ is the first one

that does not result in an error. Then define algorithm A2 as follows.

4



• AT
2 (no input)

– choose a random key K1

– C := E(K1,M)

– T := T (C)

– simulate A′O1,O2(C, T ), with the following two oracles...

∗ O1(M1):

· C := E(K1,M1)

· T := T (C)

· return (C, T )

∗ O2 always returns ERROR

...until A′ makes its i-th query to O2

– Let (Ci, Ti) be the i-th query A′ made to O2.

– return (Ci, Ti)

Note that A2 has complexity at most t, and by our analysis of algorithm A′, AT
2

produces a correct tage for a message it has never seen before with probability at
least ε/t.

Since we assumed (T, V ) was (T, ε/t)-secure, we have reached a contradiction: (E ′, D′)
is therefore CCA secure. �

5


	CBC-MAC
	Combining MAC and Encryption

