U.C. Berkeley — CS276: Cryptography Handout N6
Luca Trevisan February 5, 2009

Notes for Lecture 6

Scribed by Ian Haken, posted February 8, 2009

Summary

The encryption scheme we saw last time, based on pseudorandom functions, works
and is CPA-secure, but it is not used in practice. A disadvantage of the scheme is
that the length of the encryption is twice the length of the message being sent.

Today we see the “counter mode” generalization of that scheme, which has consider-
ably smaller overhead for long messages, and see that this preserves CPA-security.

We then give the definition of pseudorandom permutation, which is a rigorous formal-
ization of the notion of block cipher from applied cryptography, and see two ways of
using block ciphers to perform encryption. One is totally insecure (ECB), the other
(CBC) achieves CPA security.

1 The Randomized Counter Mode

Recall that a pseudorandom function is a function F: {0,1}* x {0,1}™ — {0,1}™
which looks approximately like a random function R: {0,1}™ — {0,1}™. With the
encryption method from the previous lecture (in which the ciphertext is a random
r € {0,1}™ followed by Fx(r) @ M) the encryption of a message is twice as long as
the original message. We now define an encryption method which continues to use a
pseudorandom function, but whose ciphertext overhead is marginal.

Suppose we have a pseudorandom function F: {0,1}* x {0,1}™ — {0,1}™. We
describe an encryption scheme that works for messages of variable length. We assume
without loss of generality that the length of the message is a multiple of m, and we
write a plaintext M of length em as My, ..., M., a sequence of ¢ blocks of length m.

o Enc(K,M,...,M.):

— pick a random r € {0,1}™
— output (r, Fx(r) ® My, Fx(r +1)® M,, ..., Fx(r+ (c—1)) ® M,)

[ ] D@C(K,Oo7...,oc) = Cl@FK(Co),,OC@FK(00+(C—1))



(When r is a binary string in {0,1}" and ¢ is an integer, r 4+ ¢ means the binary
representation of the sum mod 2™ of r (seen as an integer) and i.)

Observe that the ciphertext length is (¢ + 1)m which is a negligable overhead when
c>>m.

Theorem 1 Suppose F' is a (t,€)-secure pseudorandom function; then, when used to
encrypt messages of length cm, the above scheme is (t — O(em), O(e + ct/2™))-CPA
secure.

Example 2 Consider the values which these variables might take in the transmission
of a large (e.g. > 4GB) file. If we let m = 128, t = 20 ¢ =270 ¢ = 2% then we
end up with an approzimately (2°°,2738)-CPA secure transmission.

PROOF: Recall the proof from last time in which we defined Enc(R,-), where R is a
truly random function. Given messages M, M’ and a cryptanalytic algorithm 7', we
considered:

Py [TEU) (Enc(K, M)) = 1]

Pr[T7 ) (Enc(R, M) = 1]

Pr[T7" ) (Enc(R, M) = 1]

Py [TEE) (Enc(K, M')) = 1]

We were able to show in the previous proof that |(a) — (b)| <€, |(¢) — (d)] < ¢, and

|(b) — (¢)] < t/2™, thus showing that |(a) — (d)| < 2¢ +t/2™. Our proof will follow
similarly.

We will first show that for any M
B4 TP Bne(IK, M)) = 1] ~ BalT5) (Bre(R, M) = 1] < e

hence showing |(a) — (b)| < € and |(¢) — (d)| < e. Suppose for a contradiction that this
is not the case, i.e. IM = (M, ..., M.) and 3T where T is of complexity < t—O(cm)
such that

‘IP’K[TE”C(K")(Enc(K, M)) = 1] — PR[TP*") (Enc(R, M)) = 1]( > €

Define T'°0)(-) as a program which simulates T(O(M)). (Note that 7" has com-
plexity < ¢). Noting that T"#"e)() = TEeE) (Ene(K, M)) and T () =
TEne(B) (Enc(R, M)), this program 7" would be a counterexample to F' being (¢, €)-
secure.

Now we want to show that VM = M;,..., M., VM' = Mj,..., M., and VT such that
the complexity of T is <t — O(cm),




Pr[TE*E) (Enc(R, M)) = 1] — PR[TF*®) (Enc(R, M')) = 1]| < 2ct/2™

As in the previous proof, we consider the requests 7' may make to the oracle Enc(R, -).
The returned values from the oracle would be ry, R(ry) MY, R(ry+1)OMY, ..., R(ry+
(c—1)) ® MF, where k ranges between 1 and the number of requests to the oracle.
Since T has complexity limited by ¢, we can assume 1 < k < t. As before, if none of
the 7 + i overlap with r + j (for 1 <4,j < ¢) then T only sees a random stream of
bits from the oracle. Otherwise, if r, + ¢ = r + j for some ¢, 7, then T can recover,
and hence distinguish, M; and M. Hence the probability of T" distinguishing M, M’
is € plus the probability of a collision.

Note that the kth oracle request will have a collision with some r+ j iff r —c < rp <
r+ (¢ —1). If we have r < 1, < r+ (¢ — 1) then obviously there is a collision, and
otherwise r —c <rp <rsor—1<ry+ (c—1) <r+ (c—1) so there is a collision
with 7+ (c—1). If 4 is outside this range, then there is no way a collision can occur.
Since 7, is chosen randomly from the space of 2™, there is a (2¢ — 1)/2™ probability
that the kth oracle request has a collision. Hence 2¢t/2™ is an upper bound on the
probability that there is a collision in at least one the oracle requests.

Combining these results, we see that |(a) — (d)] < 2(e + ¢t/2™) = O(e + ct/2™), i.e.
[P (T2 Ene(K, M) = 1] — P[5 Ene(K, M) = 1]| = Oe +ct/2)

OJ

2 Pseudorandom Permutations

2.1 Some Motivation

Suppose the message stream has known messages, such as a protocol which always
has a common header. For example, suppose Eve knows that Bob is sending an email
to Alice, and that the first block of the message M; is the sender’s email. That is,
suppose Eve knows that M; =“bob@cs.berkeley.edu”. If Eve can insert or modify
messages on the channel, then upon seeing the ciphertext Cy, ..., C. she could then
send to Alice the stream Cy, C16 “bob@Qcs.berkeley.edu” @ “eve@cs.berkeley.edu”
,Cy, ..., C.. The result is that the message received by Alice would appear to be sent

from “eve@cs.berkeley.edu”, but remain otherwise unchanged.

2.2 Definition

Denote by P, the set of permutations P: {0,1}" — {0,1}".

3



Definition 3 A pair of functions F: {0,1}¥x{0,1}" — {0,1}", I: {0,1}}¥x{0,1}" —
{0,1}™ is a (t,€)-secure pseudorandom permutation if:

o For every r € {0,1}*, the functions F,(-) and I,(-) are permutations (i.e. bijec-
tions) and are inverses of each other.

e For every oracle algorithm T that has complexity at most t
Pi[T715 () = 1] = Ppep, [T () = 1] <€

That is, to any algorithm 7" that doesn’t know K, the functions F, [k look like a
random permutation and its inverse.

In applied cryptography literature, pseudorandom permutations are called block ci-
phers.

How do we construct pseudorandom permutations? There are a number of block ci-
pher proposals, including the AES standard, that have been studied extensively and
are considered safe for the time being. We shall prove later that any construction
of pseudorandom functions can be turned into a construction of pseudorandom per-
mutations; also, every construction of pseudorandom generators can be turned into
a pseudorandom function, and every one-way function can be used to construct a
pseudorandom generator. Ultimately, this will mean that it is possible to construct a
block cipher whose security relies, for example, on the hardness of factoring random
integers. Such a construction, however, would not be practical.

3 Encryption Using Pseudorandom Permutations

Here are two ways of using Pseudorandom Functions and Permutations to perform
encryption. Both are used in practice.

3.1 ECB Mode
The Electronic Code-Book mode of encryption works as follows
o Enc(K,M):= Fx(M)

e Dec(K, M) :=Ix(M)

Exercise 1 Show that ECB is message-indistinguishable for one-time encryption but
not for two encryptions.



3.2 CBC Mode

In its simplest instantiation the Cipher Block-Chaining mode works as follows:

e Enc(K, M): pick a random string r € {0,1}", output (r, Fx(r & M))

[ DGC(K, (C(), 01)) = C() S5 ]K(Cl)

Note that this similar to (but a bit different from) the scheme based on pseudorandom
functions that we saw last time. In CBC, we take advantage of the fact that Fy is
now a permutation that is efficiently invertible given the secret key, and so we are
allowed to put the @M inside the computation of Fi.

There is a generalization in which one can use the same random string to send several
messages. (It requires synchronization and state information.)

e Enc(K,M,...,M,.):

— pick a random string Cy € {0,1}"
— output (Cy,CY,...,C.) where C; := Fg(C;_1 & M;)

e Dec(K,Cy,C,...,C.) = My,..., M. where M; := Ix(C;) & C;_,
Exercise 2 This mode achieves CPA security.

Note that CBC overcomes the above problem in which Eve knows a particular block
of the message being sent, for if Eve modified 'y in the encryption that Bob was
sending to Alice (as in the example above) then the change would be noticeable
because Cy, ..., C,. would not decrypt correctly.



	The Randomized Counter Mode
	Pseudorandom Permutations
	Some Motivation
	Definition

	Encryption Using Pseudorandom Permutations
	ECB Mode
	CBC Mode


