
U.C. Berkeley — CS276: Cryptography Handout N4
Luca Trevisan January 29, 2009

Notes for Lecture 4

Scribe: Anindya De, posted February 4, 2009

Summary

Last time we defined pseudorandom generators and proved that, if they exist, they
provide message-indistinguishable (and hence semantically secure) one-time encryp-
tion.

How do we construct a pseudorandom generator? We can’t if P = NP , so the se-
curity of any construction will have to rely on an unproved assumption which is at
least as strong as P 6= NP . We shall see, later on, how to construct a pseudorandom
generator based on well-established assumptions, such as the hardness of integer fac-
torization, and we shall see that the weakest assumption under which we can construct
pseudorandom generators is the existence of one-way functions.

Today, we shall instead look at RC4, a simple candidate pseudorandom generator
designed by Ron Rivest. RC4 is very efficient, and widely used in practice – for
example in the WEP standard for wireless communication. It is known to be insecure
in its simplest instantiation (which makes WEP insecure too), but there are variants
that may be secure.

This gives a complete overview of one-time symmetric-key encryption: from a rigor-
ous definition of security to a practical construction that may plausibly satisfy the
definition.

A usable, system, however, should be able to handle multiple encryptions. To define
security for multiple encryptions, we have to define what an adversary is able to do
with past messages.

In the most basic (and unsatisfactory) setting, the adversary simply sees the encryp-
tions of past messages. (Some systems used in practice fail to satisfy even this very
basic notion of security.) We can achieve this kind of security using a pseudorandom
generator if the communicating parties keep state information between communica-
tion sessions and if messages are received in the order in which they were sent.

A more satisfactory notion of security allows the adversary to see encryptions of
known plaintexts.

1

1 Description of RC4

We now present the description of RC4, a very simple candidate pseudorandom gen-
erator. This was proposed by Ron Rivest. Though there are some theoretical consid-
erations in the choice of encryption scheme, we shall not be going into it. Below we
give a slightly generalized description of RC4.

Fix a modulus s, which is 256 in RC4, and let Zs be the finite group of s elements
{0, . . . , s− 1} together with the operation of addition mod s. (The notation Z/sZ is
more common in math.)

The generator has two phases:

The first phase is intended to construct a “pseudorandom” permutation. Before, we
go into the actual construction used in RC4, we first give a description of how to
construct a nearly random permutation given a sufficiently long seed. Note that the
problem is non-trivial because even if we are given a very long random string and we
interpret the string as a function in the obvious way, then it may not be a permutation.
Hence, we need to try something more clever. A nearly random permutation may be
created in the following way. Let K be a random element in ({0, 1}8)256 which we
may interpret as an array of 256 numbers each in the range [0, 255]. In particular, let
K(a) represent the ath element. To create a permutation over 256 elements, do the
following (id represents the identity permutation i.e. id(x) = x)

• P := id

• For a ∈ Z256

– Swap P (a) and P (K(a))

What distribution over permutations do we generate with the above process? The
answer is not completely understood, but the final permutation is believed to be close
to uniformly distributed.

However, the above process is inefficient in the amount of randomness required to
create a random permutation. We now describe a process which is more randomness
efficient i.e. uses a smaller key to construct a permutation (which shall now be
“pseudorandom”, although this is not meant as a technical term; the final permutation
will be distinguishable from a truly random permutation). The seed K ∈ {0, 1}k =
({0, 1}log2 s)t (interpreted as an array over elements in Zs of length t) is converted into
a permutation P : Zs → Zs as follows (the variables a, b are in Zs and so addition is
performed mod s):

• P := id

• b := 0

2

• for a in {0, . . . s− 1} :

– b := b+ P (a) +K[a mod t]

– swap (P (a), P (b))

(Note that if k = s log2 s then the first phase has the following simpler description:
for each a ∈ Zs, swap P (a) with a random location, as in the simplified random
process.)

In the second phase, the permutation is used to produce the output of the generator
as follows:

• a := 0; b := 0

• for i := 1 to m :

– a := a+ 1

– b = b+ P (a)

– output P (P (a) + P (b))

– swap (P (a), P (b))

In RC4, s is 256, as said before, which allows extremely fast implementations, and k
is around 100.

The construction as above is known to be insecure: the second byte has probability 2−7

instead of 2−8 of being the all-zero byte which violates the definition of pseudorandom
generator.

There are other problems besides this bias, and it is possible to reconstruct the key
and completely break the generator given a not-too-long sequence of output bits.
WEP uses RC4 as described above, and is considered completely broken.

If one discards an initial prefix of the output, however, no strong attack is known. A
conservative recommendation is to drop the first 4096 bits.

2 Security for Multiple Encryptions: Vanilla Ver-

sion

Last time we introduced the following notion of security for multiple encryptions.

Definition 1 (Message indistinguishability for multiple encryptions) (Enc,Dec)
is (t, ε)-message indistinguishable for c encryptions if for every 2c messages M1, . . . ,Mc,
M ′

1, . . . ,M
′
c and every T of complexity ≤ t we have

3

|P[T (Enc(K,M1), . . . , Enc(K,Mc)) = 1]−
P[T (Enc(K,M ′

1), . . . , Enc(K,M
′
c)) = 1]| ≤ ε

An important thing to be noted here is that encoding multiple messages requires the
encryption scheme to be randomized even to meet the vanilla definition of multiple
encryption security. This is because in case the scheme is deterministic, consider two
distinct messages m1 and m2. Clearly for feasibility of decryption, Enc(K,m1) 6=
Enc(K,m2). Now consider the message pairs (m1,m1) and (m1,m2). For the first
pair, Enc(K,m1), Enc(K,m1) is of the form x ◦ x whereas Enc(K,m1), Enc(K,m2)
is of the form x◦y where x 6= y. Hence a deterministic encryption does not meet even
the vanilla definition of security. In fact, with some kind of data frequency analysis,
we might be able to break the pseudorandom generator.

We now describe how to meet this vanilla definition of security using pseudorandom
generators. However, this requires the encryption and decryption to be stateful and
further the messages to be synchronized i.e. they should be decrypted in the same
order as they were sent. The idea is to use a PRG in order to expand the key and
then keep moving a counter along the output of the PRG. Initially the counter is set
to zero and if at the end of the (i − 1)th encryption, the counter is at ci−1, then in
order to encrypt the ith message (say mi), it is XORed with the substring of the PRG
output starting from the (ci−1+1)th position to (ci−1+|mi|)th position. The counter is
set to ci−1 + |mi| at the end of the encryption. The security of the encryption scheme
follows because of the observation that this reduces to encryption of one message
which is concatenation (in sequence) of the individual messages. Note that the PRG
may not be “online” in the sense that it may be necessary to compute the 100th bit
before the 50th bit can be computed. However, with a special kind of pseudorandom
generators called Stream ciphers, this problem is avoided. In this, after encryption
of the ith message, a state is stored and encrypting the (i + 1)th message, the PRG
takes as input the key as well as the state. The state is updated after producing the
output. This is much more “online” in some sense.

3 Security for Multiple Encryptions: Chosen Plain-

text Attack

In realistic scenarios, an adversary has knowledge of plaintext-ciphertext pairs. A
broadly (but not fully) general way to capture this knowledge is to look at a model
in which the adversary is able to see encryptions of arbitrary messages of her choice.
An attack in this model is called a Chosen Plaintext Attack (CPA). This model
at least captures the situation when the messages which were initially secret have
been made public in course of time and hence some plaintext ciphertext pairs are

4

available to the adversary. Using new primitives called pseudorandom functions and
pseudorandom permutations, it is possible to construct encryption schemes that satisfy
this notion of security. In fact, an even stronger notion of security where adversary
is allowed to see decryptions of certain chosen messages can also be constructed
using pseudorandom functions but it will take us some time to develop the right
tools to analyze a construction meeting this level of security. How do we construct
pseudorandom functions and permutations? It is possible to construct them from
pseudorandom generators (and hence from one-way functions), and there are ad-hoc
constructions which are believed to be secure. For the time being, we define security
under CPA and show how it generalizes the notion of multiple encryption security
given in the last section.

If O is a, possibly randomized, procedure, and A is an algorithm, we denote by AO(x)
the computation of algorithm A given x as an input and given the ability to execute
O. We charge just one unit of time for every execution of O, and we refer to A as
having oracle access to O.

Definition 2 (Message indistinguishability against CPA) (Enc,Dec) is (t, ε)-
message indistinguishable against CPA if for every 2 messages M , M ′ and every T
of complexity ≤ t we have

|P[TEnc(K,·)(Enc(K,M)) = 1]−

P[TEnc(K,·)(Enc(K,M ′)) = 1]| ≤ ε

We now prove that it is a generalization of security for multiple encryptions (as defined
in the last section)

Lemma 3 Suppose (Enc,Dec) is (t, ε)-message indistinguishable against CPA. Then
for every c it is (t− cm, cε)-message indistinguishable for c encryptions.

Proof: We prove by contradiction i.e. we assume that there exist a pair of c messages
(M1,M2, . . . ,Mc−1,Mc) and (M ′

1,M
′
2, . . . ,M

′
c−1,M

′
c) such that there is a procedure

T ′ of complexity (t − cm) which can distinguish between these two with probability
greater than cε. We shall prove existence of two messages M and M ′ and an oracle
procedure of complexity ≤ t such that

|P[TEnc(K,·)(Enc(K,M)) = 1]

−P[TEnc(K,·)(Enc(K,M ′)) = 1]| > ε

We shall assume a circuit model rather than the Turing machine model of compu-
tation here. We first start with a simple case i.e. let there exist pair of c messages

5

M1,M2, . . . ,Mc−1,Mc and M ′
1,M

′
2, . . . ,M

′
c−1,M

′
c such that the sequence differs ex-

actly at one position say i i.e. Mj = M ′
j for j 6= i and Mi 6= M ′

i . By assumption, we
can say that

|P[T ′(Enc(K,M1), . . . , Enc(K,Mc) = 1]−P[T ′(Enc(K,M ′
1), . . . , Enc(K,M

′
c)) = 1]| > cε

The machine T on being given input C simulates machine T ′ as

T ′(Enc(K,M1), . . . , Enc(K,Mi−1), C, Enc(K,Mi+1), . . . , Enc(K,Mc))

using the oracle to know Enc(K,Mj) for j 6= i. Clearly by assumption, T can
distinguish between Enc(K,Mi) and Enc(K,M ′

i) with probability more than cε > ε.
Also, the hardwiring of the messages Mj for j 6= i increases the circuit complexity
by at most cm (there are c of them and each is of length at most m). Hence T is
a circuit of complexity at most t. To move to the general case where the sequences
differ at more than one place, we use the hybrid argument which is a staple of proofs
in cryptography. We shall use it here as follows. Consider c-tuple Da defined as -

Da = Enc(K,M1), . . . , Enc(K,Mc−a),

Enc(K,M ′
c−a+1), . . . , Enc(K,M

′
c)

Then, we have that |P[T ′(D0) = 1] − P[T ′(Dc) = 1]| > cε which can be rewritten as
|
∑c−1

a=0 P[T ′(Da) = 1] − P[T ′(Da+1) = 1]| > cε. By triangle inequality, we get that
there exists some j such that |P[T ′(Dj)] − P[T ′(Dj+1)]| > ε. However, note that Dj

and Dj+1 differ at exactly one position, a case which we have already solved. The
only difference is that the distinguishing probability is ε rather than cε because of
introduction of the hybrid argument. �

6

	Description of RC4
	Security for Multiple Encryptions: Vanilla Version
	Security for Multiple Encryptions: Chosen Plaintext Attack

