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Summary

Last time we introduced the setting of one-time symmetric key encryption, defined the
notion of semantic security, and proved its equivalence to message indistinguishability.

Today we complete the proof of equivalence (found in the notes for last class), discuss
the notion of pseudorandom generator, and see that it is precisely the primitive that
is needed in order to have message-indistinguishable (and hence semantically secure)
one-time encryption. Finally, we shall introduce the basic definition of security for
protocols which send multiple messages with the same key.

1 Pseudorandom Generators And One-Time En-

cryption

Intuitively, a Pseudorandom Generator is a function that takes a short random string
and stretches it to a longer string which is almost random, in the sense that reasonably
complex algorithms cannot differentiate the new string from truly random strings with
more than negligible probability.

Definition 1 (Pseudorandom Generator) A function G : {0, 1}k → {0, 1}m is a
(t, ε)-secure pseudorandom generator if for every boolean function T of complexity at
most t we have

|Px∼Uk
[T (G(x)) = 1]− Px∼Um [T (x) = 1]| ≤ ε (1)

(We use the notation Un for the uniform distribution over {0, 1}n.)

The definition is interesting when m > k (otherwise the generator can simply output
the first m bits of the input, and satisfy the definition with ε = 0 and arbitrarily large
t). Typical parameters we may be interested in are k = 128, m = 220, t = 260 and
ε = 2−40, that is we want k to be very small, m to be large, t to be huge, and ε to be
tiny. There are some unavoidable trade-offs between these parameters.
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Lemma 2 If G : {0, 1}k → {0, 1}m is (t, 2−k−1) pseudorandom with t = O(m), then
k ≥ m− 1.

Proof: Pick an arbitrary y ∈ {0, 1}k. Define

Ty(x) = 1⇔ x = G(y)

It is clear that we may implement T with an algorithm of complexity O(m): all this
algorithm has to do is store the value of G(y) (which takes space O(m)) and compare
its input to the stored value (which takes time O(m)) for total complexity of O(m).
Now, note that

Px∼Uk
[T (G(x)) = 1] ≥ 1

2k

since G(x) = G(y) at least when x = y. Similarly, note that Px∼Um [T (x) = 1] = 1
2m

since T (x) = 1 only when x = G(y). Now, by the pseudorandomness of G, we have
that 1

2k − 1
2m ≤ 1

2k+1 . With some rearranging, this expression implies that

1

2k+1
≤ 1

2m

which then implies m ≤ k + 1 and consequently k ≥ m− 1 �

Exercise 1 Prove that if G : {0, 1}k → {0, 1}m is (t, ε) pseudorandom, and k < m,
then

t · 1

ε
≤ O(m · 2k)

Suppose we have a pseudorandom generator as above. Consider the following encryp-
tion scheme:

• Given a key K ∈ {0, 1}k and a message M ∈ {0, 1}m,

Enc(K,M) := M ⊕G(K)

• Given a ciphertext C ∈ {0, 1}m and a key K ∈ {0, 1}k,

Dec(K,C) = C ⊕G(K)

(The XOR operation is applied bit-wise.)

It’s clear by construction that the encryption scheme is correct. Regarding the secu-
rity, we have
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Lemma 3 If G is (t, ε)-pseudorandom, then (Enc,Dec) as defined above is (t −
m, 2ε)-message indistinguishable for one-time encryption.

Proof: Suppose that G is not (t − m, 2ε)-message indistinguishable for one-time
encryption. Then ∃ messages M1,M2 and ∃ algorithm T of complexity at most t−m
such that

|PK∼Uk
[T (Enc(K,M1)) = 1]− PK∼Uk

[T (Enc(K,M2)) = 1]| > 2ε

By using the definition of Enc we obtain

|PK∼Uk
[T (G(K)⊕M1)) = 1]− PK∼Uk

[T (G(K)⊕M2)) = 1]| > 2ε

Now, we can add and subtract the term PR∼Um [T (R) = 1] and use the triangle
inequality to obtain that |PK∼Uk

[T (G(K)⊕M1) = 1]− PR∼Um [T (R) = 1]| added to
|PR∼Um [T (R) = 1]− PK∼Uk

[T (G(K)⊕M2) = 1]| is greater than 2ε. At least one of
the two terms in the previous expression must be greater that ε. Suppose without
loss of generality that the first term is greater than ε

|PK∼Uk
[T (G(K)⊕M1)) = 1]− PR∼Um [T (R) = 1]| > ε

Now define T ′(X) = T (X ⊕ M1). Then since H(X) = X ⊕ M1 is a bijection,
PR∼Um [T ′(R) = 1] = PR∼Um [T (R) = 1]. Consequently,

|PK∼Uk
[T ′(G(K)) = 1]− PR∼Um [T ′(R) = 1]| > ε

Thus, since the complexity of T is at most t − m and T ′ is T plus an xor oper-
ation (which takes time m), T ′ is of complexity at most t. Thus, G is not (t, ε)-
pseudorandom since there exists an algorithm T ′ of complexity at most t that can
distinguish between G’s output and random strings with probability greater than ε.
Contradiction. Thus (Enc,Dec) is (t−m, 2ε)-message indistinguishable. �

2 Security for Multiple Encryptions: Plain Ver-

sion

In the real world, we often need to send more than just one message. Consequently,
we have to create new definitions of security for such situations, where we use the
same key to send multiple messages. There are in fact multiple possible definitions
of security in this scenario. Today we shall only introduce the simplest definition.
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Definition 4 (Message indistinguishability for multiple encryptions) (Enc,Dec)
is (t, ε)-message indistinguishable for c encryptions if for every 2c messages M1, . . . ,Mc,
M ′

1, . . . ,M
′
c and every T of complexity ≤ t we have

|P[T (Enc(K,M1), . . . , Enc(K,Mc)) = 1]

−P[T (Enc(K,M ′
1), . . . , Enc(K,M

′
c)) = 1]| ≤ ε

Similarly, we define semantic security, and the asymptotic versions.

Exercise 2 Prove that no encryption scheme (Enc,Dec) in which Enc() is deter-
ministic (such as the scheme for one-time encryption described above) can be secure
even for 2 encryptions.

Encryption in some versions of Microsoft Office is deterministic and thus fails to
satisfy this definition. (This is just a symptom of bigger problems; the schemes in
those versions of Office are considered completely broken.)

If we allow the encryption algorithm to keep state information, then a pseudorandom
generator is sufficient to meet this definition. Indeed, usually pseudorandom gener-
ators designed for such applications, including RC4, are optimized for this kind of
“stateful multiple encryption.”

Next time, we shall consider a stronger model of multiple message security which will
be secure against Chosen Plaintext Attacks.
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