
Stanford University — CS261: Optimization Handout 16
Luca Trevisan March 2, 2011

Lecture 16

In which we define a multi-commodity flow problem, and we see that its dual is the
relaxation of a useful graph partitioning problem. The relaxation can be rounded to
yield an approximate graph partitioning algorithm.

1 Generalizations of the Maximum Flow Problem

An advantage of writing the maximum flow problem as a linear program, as we did
in the past lecture, is that we can consider variations of the maximum flow problem
in which we add extra constraints on the flow and, as long as the extra constraints
are linear, we are guaranteed that we still have a polynomial time solvable problem.
(Because we can still write the problem as a linear program, and we can solve linear
programming in polynomial time.)

Certain variants of maximum flow are also easily reducible to the standard maximum
flow problem, and so they are solvable using the combinatorial algorithms that we
have discussed.

Example 1 (Vertex Capacities) An interesting variant of the maximum flow prob-
lem is the one in which, in addition to having a capacity c(u, v) for every edge, we also
have a capacity c(u) for every vertex, and a flow f(·, ·) is feasible only if, in addition
to the conservation constraints and the edge capacity constraints, it also satisfies the
vertex capacity constraints

∑
u:(u,v)∈E

f(u, v) ≤ c(v) ∀v ∈ V

It is easy to see that the problem can be reduced to the standard maximum flow problem,
by splitting every vertex v into two vertices vin and vout, adding one edge (vin, vout) of
capacity c(v), and then converting every edge (u, v) to an edge (u, vin) and every edge
(v, w) to an edge (vout, w). It is easy to show that solving the (standard) maximum
flow problem on the new network is equivalent to solving the maximum flow with
vertex capacity constraints in the original network.

1

Example 2 (Multiple Sources and Sinks and “Sum” Cost Function) Several
important variants of the maximum flow problems involve multiple source-sink pairs
(s1, t1), . . . , (sk, tk), rather than just one source and one sink. Assuming that the
“stuff” that the sources want to send to the sinks is of the same type, the problem is
to find multiple feasible flows f 1(·, ·), . . ., fk(·, ·), where f i(·, ·) is a feasible flow from
the source si to the sink ti, and such that the capacity constraints

k∑
i=1

f i(u, v) ≤ c(u, v) ∀(u, v) ∈ E

are satisfied. Such a flow is called a “multi-commodity” flow.

How do we measure how “good” is a multicommodity flow? A simple measure is to
consider the sum of the costs

k∑
i=1

∑
v

f i(si, v)

In such a case, we can do a reduction to the standard maximum flow problem by adding
a “super-source” node s, connected with edges of infinite capacity to the sources si,
and a “super-sink” node t, to which all sinks ti are connected to, via infinite capacity
edges. It is easy to see that the maximum flow from s to t is the same as the maximum
sum of flows in a feasible multicommodity flow in the original network.

In many applications, looking at the sum of the costs of the various flows f i(·, ·) is
not a “fair” measure. For example, if the underlying network is a communication
network, and (s1, t1), (s2, t2) are pairs of nodes that need to communicate, a solution
that provides 5Mb/s of bandwidth between s1 and t1 and no bandwidth between s2

and t2 is not a very good solution compared, for example, with a solution that provides
2Mb/s of bandwidth each between s1 and t1 and between s2 and t2. (Especially so
from the point of view of s2 and t2.) There are various reasonable measures of
the quality of a multicommodity flow which are more fair, for example we may be
interested in maximizing the median flow, or the minimum flow. A rather general
problem, which can be used to find multicommodity flows maximizing various cost
measures is the following.

Definition 3 (Multicommodity Feasibility Problem) Given in input a network
G = (V, EG) with capacities c(u, v) for each (u, v) ∈ EG, and given a collection of
(not necessarily disjoint) pairs (s1, t1), . . ., (sk, tk), each having a demand d(si, ti),
find a feasible multicommodity flow f 1(·, ·), . . . , fk(·, ·) such that

∑
v

f i(si, v) ≥ d(si, ti) ∀i = 1, . . . , k

2

or determine that no such multicommodity flow exists.

A more general version, which is defined as an optimization problem, is as follows.

Definition 4 (Maximizing Fractional Demands) Given in input a network G =
(V, EG) with capacities c(u, v) for each (u, v) ∈ EG, and given a collection of (not
necessarily disjoint) pairs (s1, t1), . . ., (sk, tk), each having a demand d(si, ti), find a
feasible multicommodity flow f 1(·, ·), . . . , fk(·, ·) such that

∑
v

f i(si, v) ≥ y · d(si, ti) ∀i = 1, . . . , k

and such that y is maximized.

Note that the vertices s1, . . . , sk, t1, . . . , tk need not be distinct. For example, in the
case of a communication network, we could have a broadcast problem in which a
node s wants to send data to all other nodes, in which case the source-sink pairs are
all of the form (s, v) for v ∈ V − {s}. It is useful to think of the pairs of vertices
that require communication as defining a weighted graph, with the weights given by
the demands. We will call H = (V, EH) the graph of demands. (In the broadcast
example, H would be a star graph.)

The Fractional Multicommodity Flow Problem can be easily formulated as a linear
program.

maximize y
subject to ∑

u

f s,t(u, v) =
∑

w

f s,t(v, w) ∀(s, t) ∈ EH∀v ∈ V − {s, t}∑
(s,t)∈EH

f s,t(u, v) ≤ c(u, v) ∀(u, v) ∈ EG∑
v

f s,t(s, v) ≥ y · d(s, t) ∀(s, t) ∈ EH

f s,t(u, v) ≥ 0 ∀(s, t) ∈ EH , (u, v) ∈ EG

(1)

As for the standard maximum flow problem, it is also possible to give a formulation
that involves an exponential number of variables, but for which it is easier to derive
the dual.

In the following formulation, Ps,t is the set of all paths from s to t in G, and we have
a variable xp for each path in Ps,t, for each (s, t) ∈ EH , corresponding to how many

3

units of flow from s to t are routed through the path p.

maximize y
subject to ∑

p∈Ps,t

xp ≥ y · d(s, t) ∀(s, t) ∈ EH∑
p:(u,v)∈p

xp ≤ c(u, v) ∀(u, v) ∈ EG

xp ≥ 0 ∀p
y ≥ 0

(2)

Note that if EH contains only one edge (s, t), and d(s, t) = 1, then we have the
standard maximum flow problem.

2 The Dual of the Fractional Multicommodity Flow

Problem

The dual of (2) has one variable w(s, t) for each (s, t) ∈ EH , and a one variable z(u, v)
for each (u, v) ∈ EG. It is as follows:

minimize
∑

u,v z(u, v)c(u, v)

subject to ∑
(s,t)∈EH

w(s, t)d(s, t) ≥ 1

−w(s, t) +
∑

(u,v)∈p

z(u, v) ≥ 0 ∀(s, t) ∈ EH , p ∈ Ps,t

w(s, t) ≥ 0 ∀(s, t) ∈ EH

z(u, v) ≥ 0 ∀(u, v) ∈ EG

(3)

Thinking a bit about (3) makes us realize that, in an optimal solution, without loss
of generality w(s, t) is be the shortest path from s to t in the graph weighted by
the z(u, v). Indeed, the constraints force w(s, t) to be at most the length of the
shortest z(·, ·)-weighted path from s to t, and, if some w(s, t) is strictly smaller than
the length of the shortest path, we can make it equal to the length of the shortest
path without sacrificing feasibility and without changing the cost of the solution.
The other observation is that, in an optimal solution, we have

∑
w(s, t)d(s, t) = 1,

because, in a solution in which
∑

w(s, t)d(s, t) = c > 1, we can divide all the w(s, t)
and all the z(u, v) by c, and obtain a solution that is still feasible and has smaller
cost. This means that the following linear program is equivalent to (3). We have a

4

variable `(x, y) for every pair of vertices in EG ∪ EH :

minimize
∑

u,v `(u, v)c(u, v)

subject to ∑
(s,t)∈EH

`(s, t)d(s, t) = 1∑
(u,v)∈p

`(u, v) ≥ `(s, t) ∀(s, t) ∈ EH , p ∈ Ps,t

`(u, v) ≥ 0 ∀(u, v) ∈ EG ∪ EH

(4)

3 The Sparsest Cut Problem

From now on, we restrict ourselves to the case in which the graphs EG and EH are
undirected. In such a case, we have a variable `(u, v) for each unordered pair u, v.
The constraints

∑
(u,v)∈p `(u, v) ≥ `(s, t) can be equivalently restated as the triangle

inequalities

`(u1, u3) ≤ `(u1, u2) + `(u2, u3)

This means that we are requiring `(u, v) to be non-negative, symmetric and to satisfy
the triangle inequality, and so it is a metric over V . (Technically, it is a semimetric
because we can have distinct vertices at distance zero, and `(·, ·) is not defined for
all pairs, but only for pairs in EG ∪ EH , although we could extend it to all pairs by
computing all-pairs shortest paths based on the weights `(x, y) for (x, y) ∈ EG∪EH .)

These observations give us one more alternative formulation:

min
`(·,·) metric

∑
(u,v)∈EG

c(u, v) · `(u, v)∑
(s,t)∈EH

d(s, t) · `(s, t)

Now, finally, we can see that the above formulation is the linear programming relax-
ation of a cut problem.

If A ⊆ V is a subset of vertices, we say that a pair (u, v) is cut by A if u ∈ A and
v 6∈ A, or vice versa.

Given an instance of the multicommodity flow problem, we say that a subset A of
vertices is a cut if it cuts at least one of the pairs in EH . The sparsest cut (also called
quotient cut) problem is to find a cut A that minimizes the ratio

5

∑
(u,v)∈EG cut by A

c(u, v)∑
(s,t)∈EH cut by A

d(s, t)

which is called the sparsity of the cut A.

Note that, if EH contains only one pair (s, t), and d(s, t) = 1, then we have exactly
the standard minimum cut problem.

Suppose that, in our multicommodity problem, there is a fractional flow of cost y.
Then, for each pair (s, t) that is cut by A, the yd(s, t) units of flow from s to t must pass
through edges of EG that are also cut by A. Overall,

∑
(s,t)cut by A yd(s, t) units of flow

must pass through those edges, whose overall capacity is at most
∑

(u,v)cut by A c(u, v),
so we must have ∑

(u,v)cut by A

c(u, v) ≥ y
∑

(s,t)cut by A

d(s, t)

which means that the sparsity of A must be at least y. This means that sparsity of
every cut is at least the fractional cost of any flow. (This is not surprising because
we derived the sparsest cut problem from the dual of the flow problem, but there is
a very simple direct reason why the above bound holds.)

Now it would be very nice if we had an exact rounding algorithm to find the optimum
of the sparsest cut problem.

For a given graph G = (V, EG) with capacities c(u, v), if we define EH to be a clique
and d(s, t) = 1 for all s, t, then solving the sparsest cut problem on G and H becomes
the problem of finding a set A that minimizes∑

(u,v)∈EG cut by A

c(u, v)

|A| · |V − A|

and optimizing such a cost function tends to favor finding sets A that are large and
that have few edges coming out. This is useful in a number of contexts. In clustering
problems, if the capacities represent similarity, a sparsest cut algorithm will pick out
sets of vertices that are mostly similar to each other, but dissimilar to the other
vertices, that is, a cluster. Very effective image segmentation algorithms are based on
applying sparsest cut approximation algorithms (but not the one we are describing in
these notes, which is too slow) to graphs in which there is a vertex for every pixel, and
edges connect nearby pixels with a capacity corresponding to how likely the pixels
are to belong to same object in the image.

Unfortunately, the sparsest cut problem is NP-hard. Rounding (4), however, it is
possible to achieve a O(log |EH |)-factor approximation.

6

We very briefly describe what the approximation algorithm looks like.

First, we need the following result:

Lemma 5 For every input G, H, c, d, and every feasible solution `(·, ·) of (4), it is
possible to find in polynomial time a subset S of vertices, such that if we define

gS(v) := min
a∈S

`(a, v)

then we have ∑
(s,t)∈EH

`(s, t)d(s, t) ≤ O(log |EH |)
∑

(s,t)∈EH

|gS(s)− gS(t)|d(s, t)

The proof is rather complicated, and we will skip it.

Then we have the following fact:

Lemma 6 For every input G, H, c, d, every feasible solution `(·, ·) of (4), and every
subset S of vertices, if we define gS(v) := mina∈S `(a, v), we have

∑
(u,v)∈EG

`(u, v)c(u, v) ≥
∑

(u,v)∈EG

|gS(u)− gS(v)|c(u, v)

Proof: It is enough to show that we have, for every u, v,

`(u, v) ≥ |gS(u)− gS(v)|

Let a be the vertex such that `(a, u) = gS(u) and b be the vertex such that `(b, v) =
gS(v). (They need not be different.) Then, from the triangle inequality, we get

`(u, v) ≥ `(u, b)− `(b, v) ≥ `(u, a)− `(b, v) = gS(u)− gS(v)

and
`(u, v) ≥ `(v, a)− `(a, u) ≥ `(v, b)− `(u, a) = gS(v)− gS(a)

and so
`(u, v) ≥ |gS(u)− gS(v)|

�

Lemma 7 For every input G, H, c, d, and every function g : V → R, we can find in
polynomial time a cut A such that

7

∑
(u,v)∈EG cut by A

c(u, v)∑
(s,t)∈EH cut by A

d(s, t)
≤

∑
(u,v)∈EG

|g(u)− g(v)|c(u, v)∑
(s,t)∈EH

|g(s)− g(t)|d(s, t)

Proof: We sort the vertices in ascending value of g, so that we have an ordering
u1, . . . , un of the vertices such that

g(u1) ≤ g(u2) ≤ · · · ≤ g(un)

We are going to consider all the cuts of the form A := {u1, . . . , uk}, and we will show
that at least one of them has sparsity at most

r :=

∑
(u,v)∈EG

|g(u)− g(v)|c(u, v)∑
(s,t)∈EH

|g(s)− g(t)|d(s, t)

Since r does not change if we scale g(·) by a multiplicative constant, we will assume
without loss of generality that g(un)− g(u1) = 1.

Let us pick a threshold T uniformly at random in the interval [g(u1), g(un)], and
define the set A := {u : g(u) ≤ T}. Now note that, for every pair of vertices x, y, the
probability that (x, y) is cut by A is precisely |g(x)− g(y)|, and so

E
∑

(u,v)∈EG cut by A

c(u, v) =
∑

(u,v)∈EG

|g(u)− g(v)|c(u, v)

and

E
∑

(s,t)∈EH cut by A

d(s, t) =
∑

(s,t)∈EH

|g(s)− g(t)|d(s, t)

so that

E
∑

(u,v)∈EG cut by A

c(u, v)− r
∑

(s,t)∈EH cut by A

d(s, t) = 0

and so there must exist an A in our sample space (which consists of sets of the form
{u1, . . . , uk}) such that

∑
(u,v)∈EG cut by A

c(u, v)− r
∑

(s,t)∈EH cut by A

d(s, t) ≥ 0

that is, ∑
(u,v)∈EG cut by A

c(u, v)∑
(s,t)∈EH cut by A

d(s, t)
≤ r

8

�

This is enough to have an O(log |EH |)-approximate algorithm for the sparsest cut
problem.

On input the graphs G, H, the capacities c(·, ·) and the demands d(·, ·), we solve the
linear program (4), and find an optimal solution `(·, ·) of cost optlp. Then we use
Lemma 5 to find a set S such that, if we define gS(v) := mina∈S `(a, v), we have (using
also Lemma 6) ∑

(u,v)∈EG
|g(u)− g(v)|c(u, v)∑

(s,t)∈EH
|g(s)− g(t)|d(s, t)

≤ optlp ·O(log |EH |)

Finally, we use the algorithm of Lemma 7 to find a cut A whose sparsity is at most
optlp ·O(log |EH |), which is at most O(log |EH |) times the sparsity of the optimal cut.
This proves the main result of this lecture.

Theorem 8 There is a polynomial time O(log |EH |)-approximate algorithm for the
sparsest cut problem.

9

	Generalizations of the Maximum Flow Problem
	The Dual of the Fractional Multicommodity Flow Problem
	The Sparsest Cut Problem

