
Stanford University — CS261: Optimization Handout 14
Luca Trevisan February 22, 2011

In which we show how to solve the maximum matching problem and the minimum
vertex cover problem in bipartite graphs.

Lecture 14

In this lecture we show applications of the theory of (and of algorithms for) the
maximum flow problem to the design of algorithms for problems in bipartite graphs.

A bipartite graph is an undirected graph G = (V, E) such that the set of vertices
V can be partitioned into two subsets L and R such that every edge in E has one
endpoint in L and one endpoint in R.

For example, the 3-cube is bipartite, as can be seen by putting in L all the vertices
whose label has an even number of ones and in R all the vertices whose label has an
odd number of ones.

There is a simple linear time algorithm that checks if a graph is bipartite and, if so,
finds a partition of V into sets L and R such that all edges go between L and R:
run DFS and find a spanning forest, that is, a spanning tree of the graph in each
connected component. Construct sets L and R in the following way. In each tree, put

1

the root in L, and then put in R all the vertices that, in the tree, have odd distance
from the root; put in L all the vertices that, in the tree, have even distance from
the root. If the resulting partition is not valid, that is, if there is some edge both
whose endpoints are in L or both whose endpoints are in R, then there is some tree
in which two vertices u, v are connected by an edge, even though they are both at
even distance or both at odd distance from the root r; in such a case, the cycle that
goes from r to u along the tree, then follows the edge (u, v) and then goes from v to
r along the three is an odd-length cycle, and it is easy to prove that in a bipartite
graph there is no odd cycle. Hence the algorithm either returns a valid bipartition or
a certificate that the graph is not bipartite.

Several optimization problems become simpler in bipartite graphs. The problem of
finding a maximum matching in a graph is solvable in polynomial time in general
graphs, but it has a very simple algorithm in bipartite graphs, that we shall see
shortly. (The algorithm for general graphs is beautiful but rather complicated.) The
algorithm is based on a reduction to the maximum flow problem. The reduction
has other applications, because it makes the machinery of the max flow - min cut
theorem applicable to reason about matchings. We are going to see a very simple
proof of Hall’s theorem, a classical result in graph theorem, which uses the max flow
- min cut theorem.

As another application, we are going to show how to solve optimally the minimum
vertex cover problem in bipartite graphs using a minimum cut computation, and the
relation between flows and matchings. In general graphs, the minimum vertex cover
problem is NP-complete.

The problem of finding a maximum matching in a graph, that is, a matching with
the largest number of edges, often arises in assignment problems, in which tasks are
assigned to agents, and almost always the underlying graph is bipartite, so it is of
interest to have simpler and/or faster algorithms for maximum matchings for the
special case in which the input graph is bipartite.

We will describe a way to rreduce the maximum matching problem in bipartite graphs
to the maximum flow problem, that is, a way to show that a given bipartite graph
can be transformed into a network such that, after finding a maximum flow in the
network, we can easily reconstruct a maximum matching in the original graph.

1 Maximum Matching in Bipartite Graphs

Recall that, in an undirected graph G = (V, E), a matching is a subset of edges
M ⊆ E that have no endpoint in common. In a bipartite graph with bipartition
(L, R), the edges of the matching, like all other edges, have one endpoint in L and
one endpoint in R.

2

Consider the following algorithm.

• Input: undirected bipartite graph G = (V, E), partition of V into sets
L, R

• Construct a network (G′ = (V ′, E ′), s, t, c) as follows:

– the vertex set is V ′ := V ∪{s, t}, where s and t are two new vertices;

– E ′ contains a directed edge (s, u) for every u ∈ L, a directed edge
(u, v) for every edge (u, v) ∈ E, where u ∈ L and v ∈ R, and a
directed edge (v, t) for every v ∈ R;

– each edge has capacity 1;

• find a maximum flow f(·, ·) in the network, making sure that all flows
f(u, v) are either zero or one

• return M := {(u, v) ∈ E such that f(u, v) = 1}

The running time of the algorithm is the time needed to solve the maximum flow on
the network (G′, s, t, c) plus an extra O(|E|) amount of work to construct the network
and to extract the solution from the flow. In the constructed network, the maximum
flow is at most |V |, and so, using the Ford-Fulkerson algorithm, we have running time
O(|E| · |V |). The fastest algorithm for maximum matching in bipartite graphs, which
applies the push-relabel algorithm to the network, has running time O(|V | ·

√
|E|).

It is also possible to solve the problem in time O(MM(|V |)), where MM(n) is the
time that it takes to multiply two n×n matrices. (This approach does not use flows.)
Using the currently best known matrix multiplication algorithm, the running time is
about O(|V |2.37), which is better than O(|V |

√
|E|) in dense graphs. The algorithm

based on push-relabel is always better in practice.

Remark 1 (Integral Flows) It is important in the reduction that we find a flow in
which all flows are either zero or one. In a network in which all capacities are zero
or one, all the algorithms that we have seen in class will find an optimal solution in
which all flows are either zero or one. More generally, on input a network with integer
capacities, all the algorithms that we have seen in class will find a maximum flow in
which all f(u, v) are integers. It is important to keep in mind, however, that, even
though in a network with zero/one capacities there always exists an optimal integral
flow, there can also be optimal flows that are not integral.

We want to show that the algorithm is correct that is that: (1) the algorithm outputs
a matching and (2) that there cannot be any larger matching than the one found by
the algorithm.

Claim 2 The algorithm always outputs a matching, whose size is equal to the cost of
the maximal flow of G′.

3

Proof: Consider the flow f(·, ·) found by the algorithm. For every vertex u ∈ L, the
conservation constraint for u and the capacity constraint on the edge (s, u) imply:

∑
r:(u,r)∈E

f(u, r) = f(s, u) ≤ 1

and so at most one of the edges of M can be incident on u.

Similarly, for every v ∈ R we have

∑
`:(`,v)∈E

f(`, v) = f(v, t) ≤ 1

and so at most one of the edges in M can be incident on v. �

Remark 3 Note that the previous proof does not work if the flow is not integral

Claim 4 The size of the largest matching in G is at most the cost of the maximum
flow in G′.

Proof: Let M∗ be a largest matching in G. We can define a feasible flow in G′ in
the following way: for every edge (u, v) ∈ M∗, set f(s, u) = f(u, v) = f(v, t) = 1.
Set all the other flows to zero. We have defined a feasible flow, because every flow is
either zero or one, and it is one only on edges of G′, so the capacity constraints are
satisfied, and the conservation constraints are also satisfied, because for every vertex
that is not matched in M∗ there is zero incoming flow and zero outgoing flow, while
for the matched vertices there is one unit of incoming flow and one unit of outgoing
flow. The cost of the flow is the number of vertices in L that are matched, which is
equal to |M∗|.
This means that there exists a feasible flow whose cost is equal to |M∗|, and so the
cost of a maximum flow is greater than or equal to |M∗|. �

So we have established that our algorithm is correct and optimal.

2 Perfect Matchings in Bipartite Graphs

A perfect matching is a matching with |V |/2 edges. In a bipartite graph, a perfect
matching can exist only if |L| = |R|, and we can think of it as defining a bijective
mapping between L and R.

For a subset A ⊆ L, let us call N(A) ⊆ R the neighborhood of A, that is, the set of
vertices {r ∈ R : ∃a ∈ A.(a, r) ∈ E} that are connected to vertices in A by an edge

4

in E. Clearly, if there is a perfect matching in a bipartite graph G = (V, E) with
bipartition (L, R), then we must have |A| ≤ |N(A)|, because the edges of the perfect
matching match each vertex in A to a distinct vertex in N(A), and this is impossible
if |N(A)| < |A|.
A classical result in graph theory, Hall’s Theorem, is that this is the only case in
which a perfect matching does not exist.

Theorem 5 (Hall) A bipartite graph G = (V, E) with bipartition (L, R) such that
|L| = |R| has a perfect matching if and only if for every A ⊆ L we have |A| ≤ |N(A)|.

The theorem precedes the theory of flows and cuts in network, and the original proof
was constructive and a bit complicated. We can get a very simple non-constructive
proof from the max flow - min cut theorem.

Proof: We have already seen one direction of the theorem. It remains to prove that
if |A| ≤ |N(A)| for every A ⊆ L, then G has a perfect matching.

Equivalently, we will prove that if G does not have a perfect matching, then there
must be a set A ⊆ V such that |A| > |N(A)|.
Let us construct the network (G′, s, t, c) as in the algorithm above, an let us call
n = |L| = |R|. If G does not have a perfect matching, then it means that the size of
the maximum matching in G is ≤ n− 1, and so the size of the maximum flow in G′

is ≤ n− 1, and so G′ must have a cut of capacity ≤ n− 1. Let us call the cut S.

Let us call L1 := S ∩ L the left vertices in S, and L2 := L − S the remaining left
vertices, and similarly R1 := S ∩R and R2 := R− S.

In the network G′, all edges have capacity one, so the capacity of the cut S is the
number of edges that go from S to the complement of S, that is

capacity(S) = |L2|+ |R1|+ edges(L1, R2)

where |L2| is the number of edges from s to the complement of S, |R1| is the number of
edges from S into t, and edges(L1, R2) is the number of edges in E with one endpoint
in L1 and one endpoint in R2.

This means that we have

n− 1 ≥ |L2|+ |R1|+ edges(L1, R2)

and, recalling that |L1| = n− |L2|,

|L1| ≥ |R1|+ edges(L1, R2) + 1

We can also see that

5

|N(L1)| ≤ |R1|+ edges(L1, R2)

because the neighborhood of L1 can at most include edges(L1, R2) vertices in R2.
Overall, we have

|L1| ≥ N(L1) + 1

and so we have found a set on the left that is bigger than its neighborhood. �

3 Vertex Cover in Bipartite Graphs

The work that we have done on matching in bipartite graphs also gives us a very
simple polynomial time algorithm for vertex cover.

• Input: undirected bipartite graph G = (V, E), partition of V into sets L, R

• Construct a network (G′ = (V ′, E ′), s, t, c) as before

• Find a minimum-capacity cut S in the network

• Define L1 := L ∩ S, L2 := L− S, R1 := R ∩ S, R2 := R− S

• Let B be the set of vertices in R2 that have neighbors in L1

• C := L2 ∪R1 ∪B

• output C

We want to show that the algorithm outputs a vertex cover, and that the size of the
output set C is indeed the size of the minimum vertex cover.

Claim 6 The output C of the algorithm is a vertex cover

Proof: The set C covers all edges that have an endpoint either in L2 or R1, because
C includes all of L2 and all or R1. Regarding the remaining edges, that is, those that
have endpoint in L1 and the other endpoint in R2, all such edges are covered by B.
�

Claim 7 There is no vertex cover of size smaller than |C|.

Proof: Let k be the capacity of the cut. Then k is equal to

6

|L2|+ |R1|+ edges(L1, R2)

and so

k ≥ |L2|+ |R1|+ |B| = |C|

but k is equal to the capacity of the minimum cut in G′, which is equal to the cost of
the maximum flow in G′ which, by what we proved in the previous section, is equal
to the size of the maximum matching in G. This means that G has a matching of
size k, and so every vertex cover must have size ≥ k ≥ |C|. �

7

	Maximum Matching in Bipartite Graphs
	Perfect Matchings in Bipartite Graphs
	Vertex Cover in Bipartite Graphs

