
Stanford University — CS261: Optimization Handout 2
Luca Trevisan January 6, 2011

Lecture 2

In which we show the equivalence of metric and general Steiner tree, give a 2-approximate
algorithm for both problems, and begin to talk about TSP

1 Approximating the Metric Steiner Tree Problem

In the previous lecture we defined the Metric Steiner Tree Problem as follows: the
input is a set X = R∪S of points, where R is a set of required points and S is a set of
optional points, and a symmetric distance function d : X ×X → R≥0 that associates
a non-negative distance d(x, y) = d(y, x) ≥ 0 to every pair of points. We restrict the
problem to the case in which d satisfies the triangle inequality, that is,

∀x, y, z ∈ X.d(x, z) ≤ d(x, y) + d(y, z)

In such a case, d is called a (semi-)metric, hence the name of the problem.

The goal is to find a tree T = (V, E), where V is any set R ⊆ V ⊆ X of points that
includes all of the required points, and possibly some of the optional points, such that
the cost

costd(T) :=
∑

(u,v)∈E

d(u, v)

of the tree is minimized.

In the previous lecture we suggested the following algorithm: completely disregard
the optional vertices in S, and find a minimum spanning tree of the weighted graph
that has vertex set R and edge weights defined by d(·, ·).
Now we prove that this algorithm is 2-approximate, that is, it finds a solution whose
cost is at most twice the optimal cost.

To do so, we prove the following.

1

Lemma 1 Let (X = R∪S, d) be an instance of the metric Steiner tree problem, and
T = (V, E) be a Steiner tree with R ⊆ V ⊆ X.

Then there is a tree T ′ = (R, E ′) which spans the vertices in R and only the vertices
in R such that

costd(T ′) ≤ 2 · costd(T)

In particular, applying the Lemma to the optimal Steiner tree we see that there is a
spanning tree of R whose cost is at most twice the cost of the optimal Steiner tree.
This also means that the minimal spanning tree of R also has cost at most twice the
cost of the optimal Steiner tree.

Proof: [Of Lemma 1] Consider a DFS traversal of T , that is, a sequence

x0, x1, x2, . . . , xm = x0

listing the vertices of T in the order in which they are considered during a DFS,
including each time we return to a vertex at the end of each recursive call. The
sequence describes a cycle over the elements of V whose total length

∑m
i=0 d(xi, xi+1)

is precisely 2 · costd(T), because the cycle uses each edge of the tree precisely twice.

Let now y0, y1, . . . , yk be the sequence obtained from x0, . . . , xm by removing the
vertices in S and keeping only the first occurrent of each vertex in R.

Then y0, . . . , yk is a path that includes all the vertices of R, and no other vertex, and
its cost

∑k
i=0 d(yi, yi+1) is at most the cost of the cycle x0, x1, x2, . . . , xm (here we are

using the triangle inequality), and so it is at most 2 · costd(T).

But now note that y0, . . . , yk, being a path, is also a tree, and so we can take T ′ to
be tree (R, E ′) where E ′ is the edge set {(yi, yi+1)}i=0,...,k. �

For example, if we have an instance in which R = {a, b, c, d, e, f}, S = {g, h}, and
the distance function d(·, ·) assigns distance 1 to the points connected by an edge in
the graph below, and distance 2 otherwise

2

g

h
c

b

e
a

f

d

Then the following is a Steiner tree for our input whose cost is 8:

g

d

 1

f

 1

h

c

 1

b

 1

a

 1 1

e

 2

We use the argument in the proof of the Lemma to show that there is a Spanning
tree of R of cost at most 16. (In fact we will do better.)

The order in which we visit vertices in a DFS of T is a → g → d → g → f → g →
a → h → c → h → b → h → a → e → a. If we consider it as a loop that starts at
a and goes back to a after touching all vertices, some vertices more than once, then
the loop has cost 16, because it uses every edge exactly twice.

Now we note that if we take the DFS traversal, and we skip all the optional vertices
and all the vertices previously visited, we obtain an order in which to visit all the
required vertices, and no other vertex. In the example the order is a → d → f →
c→ b→ e.

a d
 2

f
 2

c
 2

b
 2

e
 2

3

Because this path was obtained by “shortcutting” a path of cost at most twice the
cost of T , and because we have the triangle inequality, the path that we find has also
cost at most twice that of T . In our example, the cost is just 10. Since a path is, in
particular, a tree, we have found a spanning tree of R whose cost is at most twice the
cost of T .

The factor of 2 in the lemma cannot be improved, because there are instances of the
Metric Steiner Tree problem in which the cost of the minimum spanning tree of R is,
in fact, arbitrarily close to twice the cost of the minimum steiner tree.

Consider an instance in which S = {v0}, R = {v1, . . . , vn}, d(v0, vi) = 1 for i =
1, . . . , n, and d(vi, vj) = 2 for all 1 ≤ i < j ≤ n. That is, consider an instance in
which the required points are all at distance two from each other, but they are all
at distance one from the unique optional point. Then the minimum Steiner tree has
v0 as a root and the nodes v1, . . . , vn as leaves, and it has cost n, but the minimum
spanning tree of R has cost 2n− 2, because it is a tree with n nodes and n− 1 edges,
and each edge is of cost 2.

2 Metric versus General Steiner Tree

The General Steiner Tree problem is like the Metric Steiner Tree problem, but we
allow arbitrary distance functions.

In this case, it is not true any more that a minimum spanning tree of R gives a good
approximation: consider the case in which R = {a, b}, S = {c}, d(a, b) = 10100,
d(a, c) = 1 and d(b, c) = 1. Then the minimum spanning tree of R has cost 10100

while the minimum Steiner tree has cost 2.

We can show, however, that our 2-approximation algorithm for Metric Steiner Tree
can be turned, with some care, into a 2-approximation algorithm for General Steiner
Tree.

Lemma 2 For every c ≥ 1, if there is a polynomial time c-approximate algorithm
for Metric Steiner Tree, then there is a polynomial time c-approximate algorithm for
General Steiner Tree.

Proof: Suppose that we have a polynomial-time c-approximate algorithm A for
Metric Steiner Tree and that we are given in input an instance (X = R ∪ S, d) of
General Steiner Tree. We show how to find, in polynomial time, a c-approximate
solution for (X, d).

For every two points x, y ∈ X, let d′(x, y) be the length of a shortest path from x to y
in the weighted graph of vertex set X of weights d(·, ·). Note that d′(·, ·) is a distance
function that satisfies the triangle inequality, because for every three points x, y, z it

4

must be the case that the length of the shortest path from x to z cannot be any more
than the length of the shortest path from x to y plus the length of the shortest path
from y to z.

This means that (X, d′) is an instance of Metric Steiner Tree, and we can apply
algorithm A to it, and find a tree T ′ = (V ′, E) of cost

costd′(T ′) ≤ c · opt(X, d′)

Now notice that, for every pair of points, d′(x, y) ≤ d(x, y), and so if T ∗ is the optimal
tree of our original input (X, d) we have

opt(X, d′) ≤ costd′(T ∗) ≤ costd(T ∗) = opt(X, d)

So putting all together we have

costd′(T ′) ≤ c · opt(X, d)

Now, from T ′, construct a graph G = (V, E) by replacing each edge (x, y) by the
shortest path from x to y according to d(·). By our construction we have

costd(G) =
∑

(x,y)∈E

d(x, y) ≤
∑

(x,y)∈E′

d′(x, y) = costd′(T ′)

Note also that G is a connected graph.

The reason why we have an inequality instead of an equality is that certain edges of
G might belong to more than one shortest path, so they are counted only once on the
left-hand side.

Finally, take a minimum spanning tree T of G according to the weights d(·, ·). Now
T is a valid Steiner tree, and we have

costd(T) ≤ costd(G) ≤ c · opt(X, d)

�

3 The Traveling Salesman Problem

In the Traveling Salesman Problem (abbreviated TSP) we are given a set of points
X and a symmetric distance function d : X ×X → R≥0. The goal is to find a cycle
that reaches all points in X and whose total length is as short as possible.

5

For example, a shuttle driver that picks up seven people at SFO and needs to take
them to their home and then go back to the airport faces a TSP instance in which
X includes eight points (the seven home addresses and the airport), and the distance
function is the driving time between two places. A DHL van driver who has to make
a series of delivery and then go back to the warehouse has a similar problem. Indeed
TSP is a basic model for several concrete problems, and it one of the most well studied
problems in combinatorial optimization.

We can distinguish four versions of TSP. One distinction is whether we work with
the Metric version, in which we restrict ourselves to inputs in which d(·, ·) satisfies
the triangle inequality, or with the General version in which d(·, ·) can be arbitrary.
Another distinction is whether we want to cycle to reach every point at least once,
or whether we are only looking for solutions in which every point is reached exactly
once.

It can be proved that, unless P = NP , no approximation is possible for the General
TSP without repetitions.

Next time we will show that the other three versions (Metric TSP without repetitions,
General TSP with repetitions, and Metric TSP with repetitions), are all equivalent
from the point of view of approximation.

6

	Approximating the Metric Steiner Tree Problem
	Metric versus General Steiner Tree
	The Traveling Salesman Problem

