
Stanford University — CS254: Computational Complexity Notes 12
Luca Trevisan 2/13/2012

Notes for Lecture 12

Circuit Lower Bounds for Parity Using the Switching Lemma

In this lecture we give an alternate proof that parity /∈ AC0 using the technique of random
restrictions. This is the original method that was used to prove parity /∈ AC0.

We will describe a proof of the following tight result.

Theorem 1 If C is a circuit of size S and depth d that computes the parity of n inputs,
then

S ≥ 2Ω(n1/d−1)

1 Conventions About the Circuit

Convention 1 We count NOT gates neither towards the size nor towards the depth of the
circuit. (This only makes the lower bound stronger.)

Lemma 2 If C is a circuit of size S and depth d, then there is a circuit C ′ of size at most
2S and depth d that computes the same function and such that all the not gates are applied
at the input level.

Proof: We prove the stronger statement that, for every gate g of C, there is a gate g′ in C ′

whose output is the complement of g. Then we just let the output of C ′ be the complement
of the output gate of C.

Let us order the gates of C as g1, . . . , gS in such a way that if the gate gi uses the output
of gate gj as an input then j < i. We describe an inductive construction. Regarding g1, if
g1 is a AND gate (respectively, an OR gate), then g′1 is an OR gate (respectively, an AND
gate), whose inputs are the complements of the inputs of g1. It follows from De Morgan’s
law that the output of g′1 is the complement of the output of g1. Now, if we have constructed
gates g′1, . . . , g

′
i whose outputs are the complement of g1, . . . , gi, then it’s easy to define g′i+1

using the same idea. 2

Convention 2 From now on, we restrict ourselves to circuits where the NOT gates are only
applied at the input level. By Lemma 2, this only affects the lower bound by a multiplicative
factor of two.

Lemma 3 If C is a circuit of size S and depth d, then there is a circuit C ′ of size at most
dS and depth d that computes the same function and such that

• The gates are arranged in d layers, so that a gate at layer i takes inputs only from
gates at layer i− 1. The gates at layer 1 take as inputs only the inputs of the circuit.

1



• Each layer contains either only OR gates or only AND gates. Layers with OR gates
and layers with AND gates alternate.

• If C satisfied Convention 2, then C ′ also satisfies Convention 2.

Proof: Using the associativity of AND and OR, we can make sure that, in every input-
output path in the circuit, we always see an alternation between AND gates and OR gates.
Said another way, we can make sure that the inputs to each AND gates are coming only
from OR gates (or from inputs to the circuit), and vice versa. Suppose that there is an
AND gate g in the circuit one of whose inputs is coming from another AND gate g′: then
we can connect the inputs of g′ directly to g. This does not change the size or depth of
the circuit, and it reduces the number of “violations” of the above property. By repeated
applications of the same rule, we eventually get a circuit of the same size and depth of C
and such that each AND gate take only inputs from OR gates (and possibly from inputs of
the circuit) and vice versa.

Finally, we arrange the gates in d layers so that each layer is made of either all AND
or all OR gates, and wires go only from lower-numbered layers to higher-numbered layers.
Finally, we replace all wires that skip many layers by a path of alternating fan-in 1 AND
gates and fan-in 1 OR gates. This step increases the size of the circuit by at most a factor
of d. 2

Convention 3 From now on, we restrict ourselves to ciruits as in the conclusion of Lemma
3.

2 Random Restrictions and Sketch of the Lower Bound Proof

A restriction fixes some inputs of a circuit to constant values, and leaves other inputs free.
More formally, a restriction is a function ρ : {1, . . . , n} → {0, 1, ∗}. Applying a restriction
ρ to a circuit C with n inputs defines a restricted circuit Cρ as follows:

• For each i ∈ {1, . . . , n}:

– If ρ(i) = 0, set the ith input of C to 0.

– If ρ(i) = 1, set the ith input of C to 1.

– If ρ(i) = ∗, leave the ith input of C as a free variable.

The proof of Theorem 1 has, roughly, the following structure. First, we show that parity
circuits of depth 2 must have exponential size and use gates of linear width (Lemma 4).
Next, we suppose by way of contradiction that we have a circuit C of some constant depth
d which computes parity. We give a way of squashing C down to depth d − 1 while still
computing parity on many variables. We can repeat the method d − 2 times to obtain a
parity circuit of depth 2 and sublinear width, which contradicts Lemma 4. (The actual
proof, indeed, will be a direct one, and we will not need to argue by contradiction.)

Restrictions enter in our method of circuit squashing. We show that, after a random
restriction, the top two layers of the circuit can be replaced by an equivalent set of gates

2



but with a switched order of AND and OR gates. That is, if, before the restriction the top
layer had AND gates and second layer had OR gates, then, after the restriction, the first
two layers can be equivalently realized with OR gates at the first layer and AND gates and
the second layer, with no significant size increase.1 Using associativity, we can then collapse
the second and the third layer, obtaining a depth (d− 1) circuit.

3 Proof of the Lower Bound

We begin with the simple case of depth 2.

Lemma 4 If a DNF or a CNF computes parity of n variables, then:

1. Each term includes all n variables, and

2. There are at least 2n−1 terms.

Proof: We will prove the lemma for CNFs, which have OR gates at their top level and a
single AND of all the ORs at the second level. The proof for DNFs is quite similar.

For any CNF circuit C:

1. Each term includes all n variables: Suppose by way of contradiction that C has some
term t which does not depend on some variable xi. Then when all inputs to t are 0,
t outputs 0 and the single AND gate on the next level outputs 0, which is the output
of the whole circuit. Now flip the value of xi. The output of t is still 0, and thus
the output of C has not changed. But since we’ve only changed one variable, the
parity has flipped. Alas, we have a contradiction! So every term must depend on all
variables.

2. There are at least 2n−1 terms: To compute parity, C must output 0 on 2n−1 different
settings of the input variables. C outputs 0 only when one of the terms (OR gates)
outputs 0. But each OR gate outputs 0 on exactly one setting of the input variables.
Thus, C must have at least 2n−1 terms.

2

The following result is the technical core of the lower bound. It has a difficult proof that
we omit

Lemma 5 (Switching Lemma) Suppose f is a k-CNF or k-DNF over the variables x1, . . . , xn.
Pick at random a restriction that leaves a fraction p of the variables unfixed. For each of
the n(1− p) variables that are fixed, independently hardwire 0 or 1 as that variable’s value.
Then for every t,

P[after the restriction f can be expressed as a decision tree of depth t ] > 1− (7pk)t.

1In the actual proof, it will be convenient to just keep track of the width of the top gates and of the
size of the circuit not counting the first layer, instead of the total size. Through the construction, neither of
these parameters will increase at all.

3



Notice that if a function can be specified by a depth-t decision tree then, for a stronger
reason, it can be specified by a t-CNF and also by a t-DNF. We proceed with the proof of
Theorem 1.

Proof:[Of Theorem 1] Let C be a depth d circuit for parity of size S, satisfying the
conventions specified earlier.

Consider the gates at the first level, and suppose they are OR gates (a symmetric
argument applies if they are AND gates). We think of each such gate as a 1-DNF formula.
We apply the Switching Lemma with t = logS and p = 1/14, and we deduce that there
relative to a random restriction each of the top-level gates becomes a logS-CNF with
probability bigger than 1 − 1/S. In particular, there is a random restriction that makes
all top-level gates expressible as a logS-CNF formula. We apply such a restriction, we
substitute each top gate by a logS-CNF, and finally we use associativity to collapse the
AND gate of each CNF into the AND gates of the second level of the original circuit.

Now we have a circuit of depth d such that each top gate has fan-in at most logS, there
are at most S gates from level 2 to level d, and the circuit computes parity of n/14 variables.

Now we apply the Switching Lemma with k = logS, p = 1/(14 logS) and t = logS. We
get that, for each of the AND gates at level 2, after the restriction the gate can be replaced
by a (logS)-DNF with probability more than 1−1/S. Then, there is a restriction for which
this is true for all the at most S gates at level 2, we apply this restriction, we replace each
level-2 gate with a (logS)-DNF, and we collapse level 2 with level 3.

Now we have a circuit of depth d − 1 that computes parity of n/(14 · (14 logS)) bits,
and such that every top gate has fan-in at most logS and there are at most S gates from
level 2 to level d− 1.

If we repeat the same argument another d− 3 times, we end up with a circuit of depth
2 such that the fan-in of the top gates is at most logS and the circuit computes parity of
n/(14 · (14 logS)d−2 inputs. From Lemma 4 we have

logS ≥ n · 1

14 · (14 logS)d−2

which is equivalent to

S ≥ 2
1
14
n1/d−1

.

2

4 Comparison with the polynomial method

The method of random restrictions proves a stronger, and tight, lower bound for parity
than the polynomial method. Furthermore, it uses a property of the parity function (that
it remains undetermined, and still requires a large DNF, even after fixing a large number
of variables) which is true of other functions as well. Thus, the random restriction method
can be used to prove lower bound for several functions, not just parity.

The polynomial method, on the other hand, has the advantage that it can be applied
to any circuit model in which gates can be approximated by low-degree polynomials. For
example, consider the AC0[3] model in which we have NOT gates, unbounded fan-in AND

4



and OR gates, and also MOD3 gates that, given boolean inputs x1, . . . , xn output 1 if
and only if

∑
i xi 6≡ 0 (mod 3). The method of random restrictions cannot be applied to

such circuits, because a MOD3 gate has a value that remains undertermined as long as at
least three variables are not fixed, and requires a CNF of size exponential in the number
of non-fixed variables. We can, however, prove that every AC0[3] circuit of depth d that

computes the PARITY function must have size at least 2Ω(n1/4d).
Recall that the polynomial method lower bound from the last lecture relied on the

following two results:

1. If f : {0, 1}n → {0, 1} is a boolean function computable by an AC0 type circuit of
depth d and size S, then there is a polynomial g : RnR of degree O((logS)2d) such
that

P
x∈{0,1}n

[f(x) = g(x)] ≥ 3

4

2. If g : Rn → R is a polynomial such that

P
x∈{0,1}n

[PARITY (x) = g(x)] ≥ 3

4

then the degree of g is Ω(
√
n).

An inspection of the proofs from the last lecture shows that both results remain true
if instead of working with polynomials over R we work with polynomials over any field of
characteristic different from 2. (Essentially, all we need is that we are in a field and that
+1 and −1 are different.) In particular, the proof works in the field F3 in which arithmetic
operations are performed mod3.

Now, over F3, the degree-2 polynomial

p(x) :=

(
n∑
i=1

xi

)2

is such that for all x ∈ {0, 1}n we have p(x) = MOD3, and so we can find a low-degree
approximation of a AC0[3] circuit with the same parameters as the low-degree approxima-
tion of AC0, and thus prove the lower bound for computing PARITY on AC0[3] circuits.

5


	Conventions About the Circuit
	Random Restrictions and Sketch of the Lower Bound Proof
	Proof of the Lower Bound
	Comparison with the polynomial method

