
Stanford University — CS254: Computational Complexity Notes 11
Luca Trevisan 2/11/2014

Notes for Lecture 11

Circuit Lower Bounds for Parity Using Polynomials

In this lecture we prove a lower bound on the size of a constant depth circuit which com-
putes the XOR of n bits.

Before we talk about bounds on the size of a circuit, let us first clarify what we mean by
circuit depth and circuit size. The depth of a circuit is defined as the length of the longest
path from the input to output. The size of a circuit is the number of AND and OR gates
in the circuit. Note that, for our purpose, we assume all the gates have unlimited fan-in
and fan-out. We define AC0 to be the class of decision problems solvable by circuits of
polynomial size and constant depth. We want to prove the result that PARITY is not in
AC0.

There are two known techniques to prove this result. In this class, we will talk about a
proof which uses polynomials; in the next class we will look at a different proof which uses
random restrictions.

1 Circuit Upper Bounds for PARITY

Before we go into our proof, let us first look at a circuit of constant depth d that computes
PARITY.

Theorem 1 For every constant d ≥ 2, there are circuits of size 2
O

(
n

1
d−1

)
that compute

parity.

In the next lecture, we will prove a 2n
1

d−1
size lower bound, establishing the tightness

of Theorem 1. Today we will prove a weaker 2n
1
4d lower bound.

Proof: [Of Theorem 1] Consider the circuit C shown in Figure 1, which computes the
PARITY of n variables. The circuit C is a tree of XOR gates, each of which has fan-in

n
1

d−1 ; the tree has depth d− 1.

Now, since each XOR gate is a function of n
1

d−1 variables, it can be implemented by

a CNF or a DNF of size 2n
1

d−1
. Let us replace alternating layers of XOR gates in the

tree by CNF’s and DNF’s - for example we replace gates in the first layer by their CNF
implementation, gates in the second layer by their DNF implementation, and so on. This
gives us a circuit of depth 2(d − 1). Now we can use the associativity of OR to collapse
consecutive layers of OR gates into a single layer. The same thing can be done for AND to
get a circuit of depth d.

This gives us a circuit of depth d and size O(n2n
1

d−1
) which computes PARITY. 2

1

Figure 1: Circuit for Computing XOR of n variables; each small circuit in the tree computes

the XOR of k = n
1

d−1 variables

2 Overview of the Lower Bound Proof

For our proof, we will utilise a property which is common to all circuits of small size and
constant depth, which PARITY does not have.1 The property is that circuits of small size
and constant depth can be represented by low degree polynomials, with high probability.
More formally, we show that if a function f : {0, 1}n → {0, 1} is computed by a circuit of size
s and depth d, then there exists a function g : {0, 1}n → R such that Prx[f(x) = g(x)] ≥ 3

4
and ĝα 6= 0 only for |α| ≤ O((logS)2d), where ĝ is the Fourier transform of g.

Then we will show that if a function g : {0, 1}n → R agrees with PARITY on more than
a fraction 3

4 of its inputs, then there is a coefficient α such that ĝα 6= 0 and |α| = Ω(
√
n).

That is, a function which agrees with PARITY on a large fraction of its inputs, has to have
high degree. From these two results, it is easy to see that PARITY cannot be computed by
circuits of constant depth and small size.

We give a formal definition of degree of a function and then formally state the two results
that give our lower bound.

Definition 2 We say that a function g : {0, 1}n → R has degree at most d if there is
a polynomial over the reals of degree at most d such that g and the polynomial agree on
{0, 1}n.

1Incidentally, the property is false with high probability for random functions and it is computable in
time 2O(n) given the truth-table of a function. You may remember that this implies that our lower bound
will be a natural proof.

2

An equivalent way of looking at the definition of degree is to consider the size of the
largest non-zero coefficient of the Fourier transform of the function.

Fact 3 A function g : {0, 1}n → R has degree at most d if and only if ĝα = 0 for all α such
that |α| > d.

The following two lemmas are the main results of this lecture.

Lemma 4 For every circuit C of size S and depth d, there is a function g : {0, 1}n → R
of degree O((logS)2d) such that g and C agree on at least a 3/4 fraction of {0, 1}n.

Lemma 5 Let g : {0, 1}n → R be a function that agrees with PARITY on at least a 3/4
fraction of {0, 1}n. Then the degree of g is Ω(

√
n).

From Lemma 4 and Lemma 5 it is immediate to derive the following lower bound.

Theorem 6 For every constant d ≥ 2, if C is a circuit of depth d and size S that computes
parity, then S ≥ 2Ω(n1/4d).

Proof: From Lemma 4 we have that there is a function g : {0, 1}n → R that agrees with
PARITY on a 3/4 fraction of {0, 1}n, and whose degree is at most O((logS)2d). From
Lemma 5 we deduce that the degree of g must be at least Ω(

√
n), so that

(logS)2d = Ω(
√
n)

which is equivalent to

S = 2Ω(n1/4d)

2

3 Proof of Lemma 4

Most of the work in the proof of Lemma 4 will be in showing how to give a “probabilistic
approximation” of a single gate using low-degree functions.

3.1 Approximating OR

The following lemma says that we can approximately represent OR with a polynomial of
degree exponentially small in the the fan-in of the OR gate. We’ll use the notation that x
is a vector of k bits, xi is the ith bit of x, and 0 is the vector of zeros (of the appropriate
size based on context).

Lemma 7 For all k and ε, there exists a distribution G over functions g : {0, 1}k → R
such that

1. g is of degree O((log 1
ε)(log k)), and

3

2. for all x ∈ {0, 1}k,
Pr
g∼G

[g(x) = x1 ∨ . . . ∨ xk] ≥ 1− ε. (1)

The idea of the proof is that we want a random polynomial p : {0, 1}k → R that
computes OR. An obvious choice is

pbad(x1, . . . , xk) = 1−
∏

i∈{1,...,k}

(1− xi) , (2)

which computes OR with no error. But it has degree k, whereas we’d like it to have
logarithmic degree. To accomplish this amazing feat, we’ll replace the tests of all k variables
with just a few tests of random batches of variables. This gives us a random polynomial
which computes OR with one-sided error: when x = 0, we’ll have p(x) = 0; and when some
xi = 1, we’ll almost always (over our choice of p) have p(x) = 1.

Proof: We pick a random family F of subsets of the bits of x. (That is, for each S ∈ F
we have S ⊆ {1, . . . , k}). We’ll soon see how to pick F , but once the choice has been made,
we define our polynomial as

p(x1, . . . , xk) = 1−
∏
S∈F

(
1−

∑
i∈S

xi

)
. (3)

Why does p successfully approximate OR? First, suppose x1 ∨ . . . ∨ xk = 0. Then we
have x = 0, and:

p(0, . . . , 0) = 1−
∏
S∈F

(
1−

∑
i∈S

0

)
= 0. (4)

So, regardless of the distribution from which we pick F , we have

Pr
F

[p(0) = 0] = 1. (5)

Next, suppose x1 ∨ . . . ∨ xk = 1. We have p(x) = 1 if and only if the product term is
zero. The product term is zero if and only if the sum in some factor is 1. And that, in
turn, happens if and only if there is some S ∈ F which includes exactly one xi which is 1.
Formally, for any x ∈ {0, 1}k, x 6= 0, we want the following to be true with high probability.

∃S ∈ F. (|{i ∈ S : xi = 1}| = 1) (6)

Given that we do not want F to be very large (so that the degree of the polynomial is
small), we’ll have to pick F very carefully. In order to accomplish this, we turn to the
Valiant-Vazirani reduction, which you may recall from an earlier class.

Lemma 8 (Valiant-Vazirani) Let A ⊆ {1, . . . , k}, let a be such that 2a ≤ |A| ≤ 2a+1,
and let H be a family of pairwise independent hash functions of the form h : {1, . . . , k} →
{0, 1}a+2. Then if we pick h at random from H, there is probability at least 1/8 that there
is a unique element i ∈ A such that h(i) = 0. Precisely,

Pr
h∼H

[|{i ∈ A : h(i) = 0}| = 1] ≥ 1

8
(7)

4

With this as a guide, we will define our collection F in terms of pairwise independent
hash functions. Let t > 0 be a value that we will set later in terms of the approximation
parameter ε. Then we let F = {Sa,j}a∈{0,...,log k},j∈{1,...,t} where the sets Sa,j are defined as
follows.

• For a ∈ {0, . . . , log k}:

– For j ∈ {1, . . . , t}:
∗ Pick random pairwise independent hash function ha,j : {1, . . . , k} → {0, 1}a+2

∗ Define Sa,j = h−1(0). That is, Sa,j = {i : h(i) = 0}.

Now consider any x 6= 0 which we are feeding to our OR-polynomial p. Let A be the set of
bits of x which are 1, i.e., A = {i : xi = 1}, and let a be such that 2a ≤ |A| ≤ 2a+1. Then
we have a ∈ {0, . . . , log k}, so F includes t sets Sa,1, . . . , Sa,t. Consider any one such Sa,j .
By Valiant-Vazirani, we have

Pr
ha,j∼H

[|{i ∈ A : ha,j(i) = 0}| = 1] ≥ 1

8
(8)

which implies that

Pr
ha,j∼H

[|{i ∈ A : i ∈ Sa,j}| = 1] ≥ 1

8
(9)

so the probability that there is some j for which |Sa,j ∩ A| = 1 is at least 1 −
(

7
8

)t
, which

by the reasoning above tells us that

Pr
p

[p(x) = x1 ∨ . . . ∨ xk] ≥ 1−
(

7

8

)t
. (10)

Now, to get a success probability of 1−ε as required by the lemma, we just pick t = O(log 1
ε).

The degree of p will then be |F | = t(log k) = O((log 1
ε)(log k)), which satisfies the degree

requirement of the lemma. 2

Note that given this lemma, we can also approximate AND with an exponentially low
degree polynomial. Suppose we have some G which approximates OR within ε as above.
Then we can construct G′ which approximates AND by drawing g from G and returning g′

such that
g′(x1, . . . , xk) = 1− g(1− x1, . . . , 1− xk). (11)

Any such g′ has the same degree as g. Also, for a particular x ∈ {0, 1}k, g′ clearly computes
AND if g computes OR, which happens with probability at least 1− ε over our choice of g.

3.2 Proof of Lemma 4

Given a circuit C of size S and depth d, for every gate we pick independently an approx-
imating function gi with parameter ε = 1

4S , and replace the gate by gi. Then, for a given
input, the probability that the new function so defined computes C(x) correctly is at least
the probability that the results of all the gates are correctly computed, which is at least 3

4 .
In particular, there is a function among those generated this way that agrees with C() on
at least a 3/4 fraction of inputs. Each gi has degree at most O((logS)2, because the fan-in
of each gate is at most S, and the degree of the function defined in the construction is at
most O((logS)2d).

5

4 Proof of Lemma 5

Let g : {0, 1}n → R be a function of degree at most t that agrees with PARITY on at least
a 3/4 fraction of inputs. Let G : {−1, 1}n → R be defined as

G(x) := 1− 2g

(
1

2
− 1

2
x1, · · · ,

1

2
− 1

2
xn

)
(12)

Note that:

• G is still of degree at most t,

• G agrees with the function Π(x1, . . . , xn) = x1 · x2 · · ·xn on at least a 3/4 fraction of
{−1, 1}n.

Define A to be the set of x ∈ {−1, 1}n such that G(x) = Π(x).

A :=

{
x : G(x) =

n∏
i=1

xi

}
. (13)

Then |A| ≥ 3
42n, by our initial assumption. Now consider the set F of all functions f : A→ R.

These form a vector space of dimension |A| over the reals. We know that any function f in
this set can be written as

f(x) =
∑
α

f̂α
∏
i∈α

xi (14)

Over A, G(x) =
∏n
i=1 xi, and so for x ∈ A,∏

i∈α
xi = G(x)

∏
i/∈α

xi (15)

By our initial assumption, G(x) is a polynomial of degree at most t. Therefore, for every α,
such that |α| ≥ n

2 , we can replace
∏
i∈α xi by a polynomial of degree less than or equal to

t + n
2 . Every such function f which belong to F can be written as a polynomial of degree

at most t+ n
2 . Hence the set

{∏
i∈α xi

}
|α|≤t+n

2
forms a basis for the set S. As there must

be at least |A| such monomials, this means that

t+n
2∑

k=0

(
n

k

)
≥ 3

4
· 2n (16)

and, in particular,
t+n

2∑
k=n

2

(
n

k

)
≥ 1

4
· 2n (17)

We know from Stirling’s approximation that every binomial coefficient
(
n
k

)
is at most

O(2n/
√
n), so we get

O

(
t√
n
· 2n
)
≥ 1

4
· 2n (18)

And so t = Ω(
√
n).

6

	Circuit Upper Bounds for PARITY
	Overview of the Lower Bound Proof
	Proof of Lemma 4
	Approximating OR
	Proof of Lemma 4

	Proof of Lemma 5

