
Stanford University — CS254: Computational Complexity Notes 10
Luca Trevisan 2/6/2014

Notes for Lecture 10

In this lecture we discuss pseudorandomness and derandomization. These notes cover
some optional material that was not discussed in class.

1 Probabilistic Algorithms versus Deterministic Algorithms

A probabilistic algorithm A(·, ·) is an algorithm that takes two inputs x and r, where x is an
instance of some problem that we want to solve, and r is the output of a random source. A
random source is an idealized device that outputs a sequence of bits that are uniformly and
independently distributed. For example the random source could be a device that tosses
coins, observes the outcome, and outputs it. A probabilistic algorithm A is good if it is
efficient and if, say, for every x,

P
r
[A(x, r) = right answer for x] ≥ 3

4

We will typically restrict to the case where A solves a decision problem (e.g. it tests
whether two read-once branching programs are equivalent). In this case we say that a
language L is in BPP if there is a polynomial time algorithm A(·, ·) (polynomial in the
length of the first input) such that for every x

P
r
[A(x, r) = χL(x)] ≥ 3

4

or, said another way,

x ∈ L⇒ P
r
[A(x, r) = 1] ≥ 3

4

and

x 6∈ L⇒ P
r
[A(x, r) = 1] ≤ 1

4
.

The choice of the constant 3/4 is clearly quite arbitrary. For any constant 1/2 < p < 1, if we
had defined BPP by requiring the probabilistic algorithm to be correct with probability st
least p, we would have given an equivalent definition. In fact, for any polynomial p, it would
have been equivalent to define BPP by asking the algorithm to be correct with probability
at least 1/2+1/p(n), where n is the size of the input, and it would have also been equivalent
if we had asked the algorithm to be correct with probability at least 1−1/2p(n). That is, for
any two polynomials p and q, if for a decision problem L we have a probabilistic polynomial
time A that solves L on every input of length n with probability at least 1/2 + 1/p(n), then
there is another probabilistic algorithm A′, still running in polynomial time, that solves L
on every input of length n with probability at least 1− 2−q(n).

For quite a few interesting problems, the only known polynomial time algorithms are
probabilistic. A well-known example is the problem of testing whether two multivariate low-
degree polynomials given in an implicit representation are equivalent. Another example is

1

the problem of extracting “square roots” modulo a prime, i.e. to find solutions, if they exist,
to equations of the form x2 = a (mod p) where p and a are given, and p is prime. More
generally, there are probabilistic polynomial time algorithms to find roots of polynomials
modulo a prime. There is no known deterministic polynomial time algorithm for any of the
above problems.

It is not clear whether the existence of such probabilistic algorithms suggests that prob-
abilistic algorithms are inherently more powerful than deterministic ones, or that we have
not been able yet to find the best possible deterministic algorithms for these problems.
In general, it is quite an interesting question to determine what is the relative power of
probabilistic and deterministic computations. This question is the main motivations for the
results described in this lecture and the next ones.

1.1 A trivial deterministic simulation

Let A be a probabilistic algorithm that solves a decision problem L. On input x of length
n, say that A uses a random string r of length m = m(n) and runs in time T = T (n) (note
that m ≤ T).

It is easy to come up with a deterministic algorithm that solves L in time 2m(n)T (n).
On input x, compute A(x, r) for every r. The correct answer is the one that comes up the
majority of the times, so, in order to solve our problem, we just have to keep track, during
the computation of A(x, r) for every r, of the number of strings r for which A(x, r) = 1 and
the number of strings r for which A(x, r) = 0.

Notice that the running time of the simulation depends exponentially on the number of
random bits used by A, but only polynomially on the running time of A. In particular, if
A uses a logarithmic number of random bits, then the simulation is polynomial. However,
typically, a probabilistic algorithm uses a linear, or more, number of random bits, and so
this trivial simulation is exponential. As we will see in the next section, it is not easy to
obtain more efficient simulations.

1.2 Exponential gaps between randomized and deterministic procedures

For some computational problems (e.g. approximating the size of a convex body) there are
probabilistic algorithms that work even if the object on which they operate is exponentially
big and given as a black box; in some cases one can prove that deterministic algorithms
cannot solve the same problem in the same setting, unless they use exponential time. Let
us see a particularly clean (but more artificial) example of this situation.

Suppose that there is some function f : {0, 1}n × {0, 1}n → {0, 1} that is given as
an oracle; we want to devise an algorithm that on input x finds an approximation (say, to
within an additive factor 1/10) to the value Py[f(x, y) = 1]. A probabilistic algorithm would
pick O(1) points y1, . . . , yt at random, evaluate f(x, yi), and then output the fraction of i
such that f(x, yi) = 1. This will be an approximation to within 1/10 with good probability.
However a deterministic subexponential algorithm, given x, can only look at a negligible
fraction of the values f(x, y). Suppose that f is zero everywhere. Now consider the function
g(x, y) that is equal to f on all the points that our algorithm queries, and is 1 elsewhere
(note that, by this definition, the queries of the algorithm on input x will be the same for
f and g). If the algorithm takes sub-exponential time, g is almost everywhere one, yet the

2

algorithm will give the same answer as when accessing f , which is everywhere zero. If our
algorithm makes less than 2n−1 oracle queries, it cannot solve the problem with the required
accuracy.

2 De-randomization Under Complexity Assumptions

It is still not known how to improve, in the general case, the deterministic simulation of
Section 1.1, and the observation of Section 1.2 shows one of the difficulties in achieving
an improvement. If we want to come up with a general way of transforming probabilistic
procedures into deterministic sub-exponential procedures, the transformation cannot be
described and analyzed by modeling in a “black box” way the probabilistic procedure.1 If
we want to deterministically and sub-exponentially simulate BPP algorithms, we have to
exploit the fact that a BPP algorithm A(·, ·) is not an arbitrary function, but an efficiently
computable one, and this is difficult because we still have a very poor understanding of the
nature of efficient computations.

The results described in these notes show that it is indeed possible to deterministically
simulate probabilistic algorithms in sub-exponential (or even polynomial) time, provided
that certain complexity-theoretic assumptions are true. It is quite usual in complexity
theory that, using reductions, one can show that the answer to some open question is
implied by (or even equivalent to) the answer to some other question, however the nature of
the results of these notes is somewhat unusual. Typically a reduction from a computational
problem A to a problem B shows that if B has an efficient algorithm then A has also an
efficient algorithm, and, by counterpositive, if A is intractable then B is also intractable.
In general, using reductions one shows that algorithmic assumptions imply algorithmic
consequences, and intractability assumptions imply intractability consequences. In these
notes we will see instead that the existence of efficient derandomized algorithms is implied by
the intractability of some other problem, so that a hardness condition implies an algorithm
consequence.

In the next section we will introduce some notation about computational problems and
complexity measures, and then we will state some results about conditional de-randomization.

2.1 Formal Definitions of Complexity Measures and Complexity Classes

For a decision problem L and an integer n we denote by Ln the restriction of L to inputs of
length n. It will be convenient to think of Ln as a Boolean function Ln : {0, 1}n → {0, 1}
(with the convention that x ∈ Ln if and only if Ln(x) = 1).

For a function f : {0, 1}n → {0, 1}, consider the size of the smallest circuit that solves
f ; denote this number by CC(f). By definition, we have that if C is a circuit with n inputs
of size less than CC(f) then there exists an x ∈ {0, 1}n such that C(x) 6= f(x).

1More precisely, it is impossible to have a sub-exponential time deterministic “universal derandomization
procedure” that given x and oracle access to an arbitrary function A(·, ·) outputs 1 when Pr[A(x, r) =
1] ≥ 3/4 and outputs 0 when Pr[A(x, r) = 1] ≤ 1/4. In fact, more generally, it is impossible to give sub-
exponential time algorithms for all BPP problems by using “relativizing” techniques. It is beyond the scope
of these notes to explain what this means, and why it is more general. “Relativizations” are discussed in
[?], where it is possible to find pointers to the relevant literature.

3

Consider now, for every n, what is the largest s such that for every circuit C of size ≤ s
we have Px∈{0,1}n [C(x) = f(x)] ≤ 1/2 + 1/s; denote this number by H(f).

Recall that DTIME(T (n)) is the class of decision problems that can be solved by
deterministic algorithms running in time at most T (n) on inputs of length n. We have the

classes E = DTIME(2O(n)) and EXP = DTIME(2n
O(1)

).

2.2 Hardness versus Randomness

From our previous arguments, we have BPP ⊆ EXP. Since there are settings where
probabilistic procedures require exponential time to be simulated, one would conjecture
that BPP 6⊆ 2n

o(1)
; on the other hand, BPP seems to still represent a class of feasible

computations, and it would be very surprising if BPP = EXP. As we will see in a moment,
something is wrong with the above intuition. Either BPP = EXP, which sounds really
implausible, or else it must be the case that BPP has sub-exponential time deterministic
algorithms (that will work well only on average, but that would be quite remarkable enough).

Theorem 1 (Impagliazzo, Wigderson) Suppose BPP 6= EXP; then for every BPP
language L and every ε > 0 there is a deterministic algorithm A that works in time 2n

ε
and,

for infinitely many n, solves L on a fraction 1− 1/n of the inputs of length n.

This gives a non-trivial simulation of BPP under an uncontroversial assumption. We
can also get an optimal simulation of BPP under an assumption that is much stronger, but
quite believable.

Theorem 2 (Impagliazzo, Wigderson) Suppose there is a problem L in E and a fixed
δ > 0 such that, for all sufficiently large n, CC(Ln) ≥ 2δn; then P = BPP.

We will call the statement “there is a problem L in E and a fixed δ > 0 such that, for all
sufficiently large n, CC(Ln) ≥ 2δn” the “IW assumption.” Note that if the IW assumption
is true, then it is true in the case where

L = {(M,x, 1k) : machine M halts within 2k steps on input x }

Notice also that L cannot be solved by algorithms running in time 2o(n), and so it would
be a little bit surprising if it could be solvable by circuits of size 2o(n), because it would
mean that, for general exponential time computations, non-uniformity buys more than a
polynomial speed-up. In fact it would be very surprising if circuits of size 2.99n existed for
L.

The two theorems that we just stated are the extremes of a continuum of results showing
that by making assumptions on the hardness of problems in E and exp it is possible to devise
efficient deterministic algorithms for all BPP problems. The stronger the assumption, the
more efficient the simulation.

Notice that the assumption in Theorem 2 is stronger than the assumption in Theorem 1
in two ways, and that, similarly, the conclusion of Theorem 2 is stronger than the conclusion
in Theorem 1 in two ways. On the one hand, the assumption in Theorem 2 refers to circuit
size, that is, to a non-uniform measure of complexity, whereas the assumption in Theorem
1 uses a uniform measure of complexity (running time of probabilistic algorithms). This

4

difference accounts for the fact that the conclusion of Theorem 2 gives an algorithm that
works for all inputs, while the conclusion of Theorem 1 gives an algorithm that works only
for most inputs. The other difference is that Theorem 2 assumes exponential hardness, while
Theorem 2 assumes only super-polynomial hardness. This is reflected in the running time
of the consequent deterministic simulations (respectively, polynomial and sub-exponential).

3 Pseudorandom Generators

We say that a function G : {0, 1}t → {0, 1}m is a (s, ε)-pseudorandom generator if for every
circuit D of size ≤ s we have

|P
r
[D(r) = 1]− P

z
[D(G(z)) = 1]| ≤ ε

Suppose that we have a probabilistic algorithm A such that for inputs x of length n the
computation A(x, ·) can be performed by a circuit of size s(n); suppose that for every x we
have Pr[A(x, r) = right answer] ≥ 3/4, and suppose that we have a (s, 1/8) pseudorandom
generator G : {0, 1}t(n) → {0, 1}m(n). Then we can define a new probabilistic algorithm A′

such that A′(x, z) = A(x,G(z)). It is easy to observe that for every x we have

P
z
[A′(x, z) = right answer] ≥ 5/8

and that, using the trivial derandomization we can get a deterministic algorithm A′′ that
always works correctly and whose running time is 2t times the sum of the running time of
A plus the running time of G.

If t is logarithmic in m and s, and if G is computable in poly(m, s) time, then the
whole simulation runs in deterministic polynomial time. Notice also that if we have a (s, ε)-
pseudorandom generator G : {0, 1}t → {0, 1}m, then for every m′ ≤ m we also have, for a
stronger reason, a (s, ε) pseudorandom generator G′ : {0, 1}t → {0, 1}m′ (G′ just computes
G and omits the last m −m′ bits of the output). So there will be no loss in generality if
we consider only generators for the special case where, say, s = 2m. (This is not really
necessary, but it will help reduce the number of parameters in the statements of theorems.)
We have the following easy theorem.

Theorem 3 Suppose there is a family of generators Gm : {0, 1}O(logm) → {0, 1}m that are
computable in poly(m) time and that are (2m, 1/8)-pseudorandom; then P = BPP.

Of course this is only a sufficient condition. There could be other approaches to proving
(conditionally) P = BPP, without passing through the construction of such strong gener-
ators. Unfortunately we hardly know of any other approach, and anyway the (arguably)
most interesting results are proved using pseudorandom generators.

4 The two main theorems

4.1 The Nisan-Wigderson Theorem

Theorem 4 (Nisan, Wigderson) Suppose there is L ∈ E and δ > 0 such that, for all
sufficiently large n, H(Ln) ≥ 2δn; then there is a family of generators Gm : {0, 1}O(logm) →

5

{0, 1}m that are computable in poly(m) time and that are (2m, 1/8)-pseudorandom (in par-
ticular, P = BPP).

Notice the strength of the assumption. For almost every input length n, our problem
has to be so hard that even circuits of size 2δn have to be unable to solve the problem
correctly on more than a fraction 1/2 + 2−δn of the inputs. A circuit of size 1 can certainly
solve the problem on a fraction at least 1/2 of the inputs (either by always outputting 0
or by always outputting 1). Furthermore, a circuit of size 2n always exist that solves the
problem on every input. A circuit of size 2δn can contain, for example, the right solution
to our problem for every input whose first (1− δ)n bits are 0; the circuit can give the right
answer on these 2δn inputs, and answer always 0 or always 1 (whichever is better) on the
other inputs. This way the circuit is good on about a fraction 1/2 + 2−(1−δ)n of the inputs.
So, in particular, for every problem, there is a circuit of size 2n/2 that solves the problem on
a fraction 1/2+2−n/2 of the inputs. It is somewhat more tricky to show that there is in fact
even a circuit of size 2(1/3+o(1))n that solves the problem on a fraction 1/2 + 2−(1/3+o(1))n of
the inputs, and this is about best possible for general problems.

4.2 Worst-case to Average-case Reduction

Theorem 5 (Impagliazzo, Wigderson) Suppose there is L ∈ E and δ > 0 such that,
for all sufficiently large n, CC(Ln) ≥ 2δn; Then there is L′ ∈ E and δ′ > 0 such that, for
all sufficiently large n, H(L′n) ≥ 2δ

′n.

This is quite encouraging: the (believable) IW assumption implies the (a priori less believ-
able) NW assumption.

5 The Nisan-Wigderson Construction

The Nisan-Wigderson generator is based on the existence of a decision problem L in E such
that for almost every input length l we have H(Ll) ≥ 2δl, yet there is a uniform algorithm
that solves Ll in 2O(l) time. Our goal is to use these assumptions on Ll to build a generator
whose input seed is of length O(l), whose output is of length 2Θ(l) and indistinguishable
from uniform by adversaries of size 2Θ(l), and the generator should be computable in time
2O(l).

As we will see in a moment, it is not too hard to construct a generator that maps l bits
into l + 1 bits, and whose running time and pseudorandomness are as required. We will
then present the Nisan-Wigderson construction, and present its analysis.

5.1 Impredictability versus Pseudorandomness

Let f : {0, 1}l → {0, 1} be a function such that H(f) ≥ s, and consider the pseudorandom
generator G : {0, 1}l → {0, 1}l+1 defined as G(x) = x · f(x), where ‘·’ is used to denote
concatenation. We want to argue that G is a (s− 3, 1/s)-pseudorandom generator.

The argument works by contradiction, and consists in the proof of the following result.

6

Lemma 6 Let f : {0, 1}l → {0, 1}. Suppose that there is a circuit D of size s such that

|P
x
[D(x · f(x)) = 1]− P

x,b
[D(x · b) = 1]| > ε

then there is a circuit A of size s+ 3 such that

P
x
[A(x) = f(x)] >

1

2
+ ε

Proof: First of all, we observe that there is a circuit D′ of size at most s+ 1 such that

P
z
[D′(x · f(x)) = 1]− P

x,b
[D′(x · b) = 1] > ε (1)

This is because Expression (1) is satisfied either by taking D = D′ or by taking D = ¬D′.
A way to interpret Expression (1) is to observe that when the first l bits of the input of D′()
are a random string x, D′ is more likely to accept if the last bit is f(x) than if the last bit
is random (and, for a stronger reason, if the last bit is 1− f(x)). This observation suggests
the following strategy in order to use D′ to predict f : given an input x, for which we want
to compute f(x), we guess a value b, and we compute D′(x, b). If D′(x, b) = 1, we take it
as evidence that b was a good guess for f(x), and we output b. If D′(x, b) = 0, we take it
as evidence that b was the wrong guess, and we output 1− b. Let Ab be the procedure that
we just described. We claim that

P
x,b

[Ab(x) = f(x)] >
1

2
+ ε (2)

The claim is proved by the following derivation

P
x,b

[Ab(x) = f(x)]

= P
x,b

[Ab(x) = f(x)|b = f(x)] P
x,b

[b = f(x)]

+ P
x,b

[Ab(x) = f(x)|b 6= f(x)] P
x,b

[b 6= f(x)]

=
1

2
P
x,b

[Ab(x) = f(x)|b = f(x)] +
1

2
P
x,b

[Ab(x) = f(x)|b 6= f(x)]

=
1

2
P
x,b

[D′(x, b) = 1|b = f(x)] +
1

2
P
x,b

[D′(x, b) = 0|b 6= f(x)]

=
1

2
+

1

2
P
x,b

[D′(x, b) = 1|b = f(x)]− 1

2
P
x,b

[D′(x, b) = 1|b 6= f(x)]

=
1

2
+ P
x,b

[D′(x, b) = 1|b = f(x)]

−1

2

(
P
x,b

[D′(x, b) = 1|b = f(x)] + P
x,b

[D′(x, b) = 1|b 6= f(x)]

)
=

1

2
+ P

x
[D′(x, f(x)) = 1]− P

x,b
[D′(x, b) = 1]

>
1

2
+ ε

7

From Expression (2) we can observe that there must be a b0 ∈ {0, 1} such that

P
x
[Ab0(x) = f(x)] >

1

2
+ ε

And Ab0 is computed by a circuit of size at most s+ 3 because Ab0(x) = b0 ⊕ (¬D′(x, b0)),
which can be implemented with two more gates given a circuit for D′. 2

5.2 Combinatorial Designs

Consider a family (S1, . . . , Sm) of subsets of an universe U . We say the family is a (l, α)-
design if, for every i, |Si| = l, and, for every i 6= j, |Si ∩ Sj | ≤ α.

Theorem 7 For every integer l, fraction γ > 0, there is an (l, logm) design (S1, . . . , Sm)
over the universe [t], where t = O(l/γ) and m = 2γl; such a design can be constructed in
O(2ttm2) time.

We will use the following notation: if z is a string in {0, 1}t and S ⊂ [t], then we denote
by z|S the string of length |S| obtained from z by selecting the bits indexed by S. For
example if z = (0, 0, 1, 0, 1, 0) and S = {1, 2, 3, 5} then z|S = (0, 0, 1, 1).

5.3 The Nisan-Wigderson Generator

For a Boolean function f : {0, 1}l → {0, 1}, and a design S = (S1, . . . , Sm) over [t], the
Nisan-Wigderson generator is a function NWf,S : {0, 1}t → {0, 1}m defined as follows:

NWf,S(z) = f(z|S1
) · f(z|S2

) · · · f(z|Sm)

6 The Reduction from Distinguishing to Predicting

The following lemma implies Theorem 4.

Lemma 8 Let f : {0, 1}l → {0, 1} be a Boolean function and S = (S1, . . . , Sm) be a
(l, logm) design over [t]. Suppose D : {0, 1}m → {0, 1} is such that

|P
r
[D(r) = 1]− P

z
[D(NWf,S(z)) = 1]| > ε .

Then there exists a circuit C of size O(m2) such that

|P
x
[D(C(x)) = f(x)]− 1/2| ≥ ε

m

Proof: The main idea is that if D distinguishes NWf,S(·) from the uniform distribution,
then we can find a bit of the output of the generator where this distinction is noticeable.
On such a bit, D is distinguishing f(x) from a random bit, and such a distinguisher can
be turned into a predictor for f . In order to find the “right bit”, we will use the hybrid
argument.

8

Let us start with the hybrid argument. We define m + 1 distributions H0, . . . ,Hm; Hi

is defined as follows: sample a string v = NWf,S(z) for a random z, and then sample a
string r ∈ {0, 1}m according to the uniform distribution, then concatenate the first i bits of
v with the last m− i bits of r. By definition, Hm is distributed as NWf,S(y) and H0 is the
uniform distribution over {0, 1}m.

Using the hypothesis of the Lemma, we know that there is a bit b0 ∈ {0, 1} such that

P
y
[D′(NWf,S(y)) = 1]− P

r
[D′(r)] > ε

where D′(x) = b0 ⊕D(x).
We then observe that

ε ≤ P
z
[D′(NWf,S(z)) = 1]− P

r
[D′(r)]

= P[D′(Hm) = 1]− P[D′(H0) = 1]

=
m∑
i=1

(P[D′(Hi) = 1]− P[D′(Hi−1) = 1])

In particular, there exists an index i such that

P[D′(Hi) = 1]− P[D′(Hi−1) = 1] ≥ ε/m (3)

Now, recall that
Hi−1 = f(z|S1

) · · · f(z|Si−1
)riri+1 · rm

and
Hi = f(z|S1

) · · · f(y|Si−1
)f(y|Si)ri+1 · rm .

We can assume without loss of generality (up to a renaming of the indices) that Si =
{1, . . . , l}. Then we can see z ∈ {0, 1}t as a pair (x, y) where x = z|Si ∈ {0, 1}l and

y = z|[t]−Si ∈ {0, 1}t−l. For every j < i and z = (x, y), let us define fj(x, y) = f(z|Sj): note
that fj(x, y) depends on |Si ∩ Sj | ≤ logm bits of x and on l − |Si ∩ Sj | ≥ l − logm bits of
y. With this notation we have

P
x,y,ri+1,...,rm

[D′(f1(x, y), . . . , fi−1(x, y), f(x), . . . , rm) = 1]

− P
x,y,ri+1,...,rm

D′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1] > ε/m

That is, when D′ is given a string that contains fj(x, y) for j < i in the first i− 1 entries,
and random bits in the last m − i entries, then D′ is more likely to accept the string if it
contains f(x) in the i-th entry than if it contains a random bit in the i-th entry. This is
good enough to (almost) get a predictor for f . Consider the following algorithm:

Algorithm A
Input: x ∈ {0, 1}l
Pick random ri, . . . , rm ∈ {0, 1}
Pick random y ∈ {0, 1}t−l
Compute f1(x, y), . . . , fi−1(x, y)
If D′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1 output ri
Else output 1− ri

9

Let us forget for a moment about the fact that the step of computing f1(x, y), . . . , fi−1(x, y)
looks very hard, and let us check thatA is good predictor. Let us denote byA(x, y, r1, . . . , rm)
the output of A on input x and random choices y, r1, . . . , rm.

P
x,y,r

[A(x, y, r) = f(x)]

= P
x,y,r

[A(x, y, r) = f(x)|ri = f(x)] P
x,ri

[ri = f(x)]

+ P
x,y,r

[A(x, y, r) = f(x)|ri 6= f(x)] P
x,ri

[ri 6= f(x)]

=
1

2
P

x,y,r
[D′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) = ri]

+
1

2
P

x,y,r
[D′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 0|f(x) 6= ri]

=
1

2
+

1

2

(
P

x,y,r
[D′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) = b]

− P
x,y,r

[D′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) 6= b]

)
=

1

2
+ P
x,y,r

[D′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) = b]

−1

2

(
P

x,y,r
[D′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) = b]

+ P
x,y,r

[D′(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) 6= b]

)
=

1

2
+ P[D′(Hi) = 1]− P[D′(Hi−1) = 1]

≥ 1

2
+

ε

m

So A is good, and it is worthwhile to see whether we can get an efficient implementation.
We said we have

P
x,y,ri,...,rm

[A(x, y, r) = f(x)] ≥ 1

2
+

ε

m

so there surely exist fixed values ci, . . . , cm to give to ri, . . . , rm, and a fixed value w to give
to y such that

P
x,r

[A(x,w, ci, ci+1, . . . , cm) = f(x)] ≥ 1

2
+

ε

m

At this point we are essentially done. Since w is fixed, now, in order to implement A, we only
have to compute fj(x,w) given x. However, for each j, fj(x,w) is a function that depends
only on ≤ logm bits of x, and so is computable by a circuits of size O(m). Even composing
i−1 < m such circuit, we still have that the sequence f1(x,w), . . . , fi−1(x,w), ci, ci+1, . . . , cm
can be computed, given x, by a circuit C of size O(m2). Finally, we notice that at this point
A(x,w, c) is doing the following: output the xor between ci and the complement of D′(C(x)).
Since ci is fixed, either A(x,w, c) always equals D(C(x)), or one is the complement of the
other. In either case the Lemma follows. 2

At this point it should not be too hard to derive Theorem 4.

10

	Probabilistic Algorithms versus Deterministic Algorithms
	A trivial deterministic simulation
	Exponential gaps between randomized and deterministic procedures

	De-randomization Under Complexity Assumptions
	Formal Definitions of Complexity Measures and Complexity Classes
	Hardness versus Randomness

	Pseudorandom Generators
	The two main theorems
	The Nisan-Wigderson Theorem
	Worst-case to Average-case Reduction

	The Nisan-Wigderson Construction
	Impredictability versus Pseudorandomness
	Combinatorial Designs
	The Nisan-Wigderson Generator

	The Reduction from Distinguishing to Predicting

