
Stanford University — CS254: Computational Complexity Notes 8 & 9
Luca Trevisan 1/30/2014

Notes for Lecture 8 & 9

In these notes we introduce Levin’s theory of average-case complexity.
This theory is still in its infancy: in these notes we will introduce the notion of “dis-

tributional problems,” discuss various formalizations of the notion of “algorithms that are
efficient on average,” introduce a reducibility that preserves efficient average-case solvabil-
ity. Next time we will prove that there is a problem that is complete for the distributional
version of NP under such reductions. It is still an open question how to apply this theory
to the study of natural distributional problems that are believed to be hard on average.

1 Distributional Problems

Definition 1 (Distributional Problem) A distributional problem is a pair 〈L, µ〉, where
L is a decision problem and µ = µ1, . . . , µn, . . . is a collection of distributions.

Intuitively, we think of each µn as a distribution over the “inputs of length n,” although
for some problems the natural way of describing the distributions will be such that the
support of Dn contains inputs of length different from n when encoded as bit strings.1

(Levin took a slightly different definitional approach, and defined µ to be a single dis-
tribution over all possible inputs. This approach simplifies some part of the theory and
complicates some other parts. Thinking of µ as a collection of distributions makes the the-
ory closer to the way average-case complexity is treated in cryptography and in the analysis
of algorithms. The two approaches are essentially equivalent.)

2 Polynomial-Time on Average

Given a distributional problem 〈L, µ〉 and an algorithm A that runs in time tA (x) on input
x, what does it mean to say that A solves 〈L, µ〉 in polynomial time on average?

A first attempt would be to require the running time of the algorithm to be polynomial
in expectation, that is, that there is a constant c such that

E
x∼µn

[tA(x)] ≤ O(nc)

This definition is quite appealing, but is still subject to the fatal flaw of not being robust,
in that: (1) reductions do not preserve this definition of polynomial solvability on average
and (2) the definition is sensitive to the model of computation, and an algorithm that has
expected polynomial running time in one model may have exponential expected running
time when simulated on a different model, say, with quadratic slowdown.

1For example, we may be interested in solving the Max Clique problem in Gn,1/2 graphs; each graph in
the support of Gn,1/2, which would play the role of the distribution µn, has length Θ(n2) when represented
as an adjacency matrix.

1

To see why these problems arise, let µ be the uniform distribution, and suppose that,
for an input x of length n, we have

tA (x) = 2n if x = 0, tA (x) = n2 otherwise. (1)

The average running time is about n2. But suppose now that tA(x) is replaced by t2A(x):
then the expected running time becomes exponential.

The following is a more satisfying definition.

Definition 2 (Polynomial on average) Suppose A is an algorithm for a distributional
problem 〈L, µ〉 that runs in time tA(x) on input x. We say that A has polynomial running
time on average is there is a constant c such that for every n

E
x∼µn

[
tA(x)1/c

]
= O(n)

Notice, first, that this definition is satisfied by any algorithm that runs in worst-case

polynomial time. If tA(x) = O(nc) for every x of length n, then t
1/c
A (x) = O(n) and so the

expectation of t
1/c
A (x) is also O(n).

Furthermore, if the expected running time is O(nc), then we have

E
x∼µn

[t
1/c
A (x)] ≤

(
E

x∼µn
[tA(x)]

)1/c

= O(n)

where the first inequality is an application of Hölder’s inequality, so the notion of polynomial-
on-average is a relaxation of the notion of expected polynomial time.

A third observation is that the notion of polynomial-on-average is “closed under poly-
nomial slowdown,” that is, if tA(·) is the running time of a polynomial on average algorithm
with parameter c, and B is an algorithm of running time tB(x) ≤ (tA(x))k, then B is a
polynomial on average algorithm with parameter ck.

A useful fourth observation is that if an algorithm has polynomial on average running
time, then the probability of having a large running time is small, and the distribution of
running times has a “tail” that is at most inverse polynomial.

Fact 3 If tA(·) is a time bound that is polynomial on average with parameter c with respect
to a collection of distribution {µn}n≥1, then

P
x∼µn

[tA(x) ≥ T] ≤ O(1) · n

T 1/c

Proof: This is a simple application of Markov’s inequality:

P
x∼µn

[tA(x) ≥ T] = P
x∼µn

[t
1/c
A (x) ≥ T 1/c] ≤ E

x∼µn
t
1/c
A (x) · 1

T 1/c
≤ O(n) · 1

T 1/c

2

Interestingly, this property of the tail of the running time distribution provides a char-
acterization of polynomial on average running time.

2

Fact 4 If tA(·) is a time bound such that, for some constants k, ε, we have

P
x∼µn

[tA(x) ≥ T] ≤ O(1) · n
k

T ε

then tA(·) is a polynomial on average time bound with parameter 2k/ε.

Proof: We have

E tε/2A (x) =

∫ ∞
0

P[t
ε/2
A (x) ≥ T] dT

=

∫ ∞
0

P[tA(x) ≥ T 2/ε] dT

≤ O(1) ·
∫ ∞

0

nk

T 2
dT

O(nk)

And so

E tε/2kA (x) ≤
(
E tε/2A (x)

)1/k
= O(n)

2

Theorem 5 If 〈L1, µ1〉 ≤ 〈L2, µ2〉 and 〈L2, µ2〉 admits an algorithm that is polynomial on
average, then 〈L1, µ1〉 also admits an algorithm that is polynomial on average.

Proof: If B is an algorithm for L2, then consider the algorithm A that, on input x,
computes f(x) and then applies B to f(x); then A is an algorithm for L1. We want to
argue that if B is polynomial-on-average for 〈L2, µ2〉, then A is polynomial-on-average for
〈L1, µ1〉.

Let tB(y) be the running time of algorithm B on input y. If B is polynomial-on-average
for 〈L2, µ2〉 then, by our alternative characterization, we have that for every input length
m:

P
y∼µm

[tB(y) ≥ T] ≤ mO(1) · 1

TΩ(1)

Now we bound the probability that A has a large running time by noting that the inputs
x on which B(f(x)) has large running time cannot have a high probability according to
µ1, because their images f(x) have low probability according to µ2 and because of the
properties of the reduction. Fix an input length n, and let N ≤ nO(1) be an upper bound
to the length of f(x).

P
x∼µn

[tA(x) ≥ T]

= P
x∼µn

[tB(f(x)) ≥ T]

=
∑

y:tB(y)≥T
P

x∼µn
[f(x) = y]

3

≤
∑

y:tB(y)≥T

N∑
m=1

mO(1)µm(y)

=

N∑
m=1

mO(1) P
y∼µm

[tB(y) ≥ T]

≤
N∑
m=1

mO(1) ·mO(1) · 1

TΩ(1)

≤ nO(1) · 1

TΩ(1)

2

3 Heuristic Polynomial Time

In the setting of one-way functions and in the study of the average-case complexity of the
permanent and of problems in EXP (with applications to pseudorandomness), we normally
interpret “average case hardness” in the following way: that an algorithm of limited running
time will fail to solve the problem on a noticeable fraction of the input. Conversely, we would
interpret average-case tractability as the existence of an algorithm that solves the problem
in polynomial time, except on a negligible fraction of inputs.

Impagliazzo gave the following related definition.

Definition 6 (Heuristic polynomial time) We say that an algorithm A is a heuristic
polynomial time algorithm for a distributional problem 〈L, µ〉 if A(x, δ) runs in time poly-
nomial in |x| and 1/δ, and for every n and δ we have

P
x∼µn

[A(x) 6= 1L(x)] ≤ δ

where 1L is the indicator function of the language L.

Every polynomial-on-average algorithm can easily be transformed into a heuristic poly-
nomial time algorithm. If A is an algorithm for L that is always correct and such that

E
x∈µn

t1/ctA(x) ≤ a · n

then we can design an algorithm B that, given x of length n, runs A(x) for (an/δ)c steps
and provides the answer found by A, or rejects if the A(x) does not halt within (an/δ)c

steps. Then we have

P
x∼µn

[B(x) 6= 1L(x)] ≤ Px∼µn [tA(x) ≥ (an/δ)c]

= P
x∼µn

[t
1/c
A (x) ≥ an/δ] ≤ δ

It is easy to see that heuristic polynomial time is preserved under reductions.

Theorem 7 If 〈L1, µ1〉 ≤ 〈L2, µ2〉 and 〈L2, µ2〉 admits a heuristic polynomial time algo-
rithm, then 〈L1, µ1〉 also admits a heuristic polynomial time algorithm.

4

4 Samplable and Computable Distributions

We will prove a completeness results for distributional problems where where µ is “polynomial-
time computable.” What do we mean by that? For a given input length n and string x, we
define the cumulative probability

Fµn (x) =
∑
y≤x

Pr [y] . (2)

where ‘≤’ denotes lexicographic ordering. We say that µ is “polynomial time computable”
if, given n, x, and t, we can compute Fµn (x) to t-digit precision in time polynomial in n
and t.

This notion is at least as strong as the requirement that µn(x) be computable in poly-
nomial time, because

µn(x) = Fµn(x)− Fµn(x− 1) (3)

Where we use x−1 to denote the lexicographic predecessor of x. Indeed one can show that,
under reasonable assumptions, there exist distributions that are efficiently computable in
the second sense but not polynomial-time computable in our sense.

Informally, we say that a distribution µ is polynomial time samplable if there is a
randomized algorithm A (the “sampler”) that, on input n, runs in time nO(1) and produces
an output distributed according to µn. To make the definition precise, we need to pay
attention to what we mean when we say that the sampler runs in polynomial time. The
sampler is a randomized algorithm, and so it has access to a stream of random bits; if we
require that with probability 1 the sampler halts within time p(n), for some polynomial
p, then all possible outputs of the sampler are produced with a probability that is an
integer multiple of 1/2p(n), which means that even very simple distributions would not be
samplable according to this definition. (For example, consider the distribution µ in which
0 has probability 1/3 and 1 has probability 2/3.)

One possibility is to allow the sampler to fail with bounded probability, and to condition
on the sampler not failing.

Definition 8 (Strict Polynomial Time Samplability) A distribution µ is strict poly-
nomial time samplable if there is a polynomial p and an algorithm A that, on input n, runs
with probability 1 in time ≤ p(n) and such that

1. P[A(n) = ⊥] ≤ 1
2

2. For every x, P[A(n) = x|A(n) 6= ⊥] = µn(x)

Where ⊥ is a special “failure” symbol.

The upper bound of 1/2 on the failure probability could be equivalently replaced with
1/2n, since we can restart the sampling algorithm after a failure, and keep running it several
times until it produces a valid output. If we run it for up to n times, we maintain the strict
polynomial running time property, and we exponentially reduce the failure probability. If
we repeat the sampling procedure until it doesn’t fail, we output a sample with the correct

5

distribution, and the expected running time is at most 2p(n). This motives the following
definition.

Definition 9 (Expected Polynomial Time Samplability) A distribution µ is expected
polynomial time samplable if there is a polynomial p and an algorithm A such that

1. The expected running time of A(n) is at most p(n)

2. For every x, P[A(n) = x] = µn(x)

Every distribution that is strict polynomial time samplable is also expected polynomial
time samplable, but under reasonable assumptions the converse is not true. This distinction
comes up in a few applications of the notions of samplability, for example in the definition
of Perfect Zero Knowledge protocol.

It is easy to see that every polynomial time computable distribution is also expected
polynomial time samplable but it is not clear (to Luca as he is writing these notes) whether
one can also show that every polynomial time computable distribution is also strict poly-
nomial time samplable.

5 DistNP

We define the complexity class

DistNP = {〈L, µ〉 : L ∈ NP, µ polynomial-time computable} . (4)

There are at least two good reasons for looking only at polynomial-time computable
distributions.

1. One can show that there exists a distribution µ such that every problem is as hard on
average under µ as it is in the worst case. Therefore, unless we place some computa-
tional restriction on µ, the average-case theory is identical to the worst-case one.

2. Someone, somewhere, had to generate the instances we’re trying to solve. If we
place computational restrictions on ourselves, then it seems reasonable also to place
restrictions on whoever generated the instances.

It should be clear that we need a whole class of distributions to do reductions; that is,
we can’t just parameterize a complexity class by a single distribution. This is because a
problem can have more than one natural distribution.

6 Existence of Complete Problems

We now show that there exists a problem (albeit an artificial one) complete for DistNP. Let
the inputs have the form

〈
M,x, 1t

〉
, where M is an encoding of a non-deterministic Turing

machine and 1t is a sequence of t ones. Then we define the following non-deterministic
bounded halting problem NBH:

6

• Decide whether there is an accepting computation of M on input x that takes at most
t steps.

That NBH is NP-complete follows easily from the definition. From the standard char-
acterization of NP we have that L ∈ NP if there exists a nondeterministic Turing machine
ML and a polynomial p(·) such that x ∈ L if and only if M(x) has an accepting compu-
tation that takes ≤ p(|x|) steps. Thus, to reduce L to NBH we need only map x onto
(ML, x, 1

p(|x|)).
It will be more complicated to provide an average-case reduction. We define a “uniform

distribution” U over instances of NBH as follows: to sample from Un, we first pick at
random three positive integers a, b, c such that a + b + c = n, then we sample a random
M ∈ {0, 1}a and x ∈ {0, 1}b, and we output (M,x, 1c). So we have

Un(M,x, 1t) = Θ

(
1

n2

)
· 1

2|M |
· 1

2|x|

Now let µ be a polynomial time computable distribution and let L, as before, be a
language in NP. We want to give an average-case reduction from 〈L, µ〉 to 〈NBH,U〉. It
is instructive to first check whether the worst-case reduction x→ (ML, x, 1

p(|x|)) also works
as an average-case reduction. To be an average-case reduction, we need the condition that
for every possible output (ML, x, 1

p(|x|)) of the reduction, the probability of generating such
an output by applying the reduction to an element sampled from µn is at most nO(1) times
the probability of sampling (ML, x, 1

p(|x|)) from U . That is, we need the condition that for
every n and every z

P
x∼µn

[(ML, x, 1
p(|x|)) = (ML, z, 1

p(|z|))]

≤ nO(1) · U|ML|+n+p(n)(ML, z, 1
p(|z|))

= nO(1) ·Θ(1) · 1

p2(n)
· 1

2|ML|
· 1

2n

and, since the length of ML is a constant and the first expression equals µn(z), we need, for
every n and z,

µn(z) ≤ O

(
nO(1)

2n

)
which is false for many distributions.

The point of this calculation is that if the reduction outputs an instance (M,x, 1t), then
it must do so with probability at most nO(1)/2|x|, so if the reduction is given a string x
such that µn(x) is much bigger than 1/2|x|, the reduction cannot simply copy x verbatim
into its output. The reduction, however, is allowed to create an output (M,x′, 1t) provided
that µn(x) ≤ nO(1)/2|x

′|. The idea of the reduction is to use a polynomial time computable
and invertible compression algorithm C, and, given x, output (M ′L, C(x), 1t), where M ′L is
a machine that, given a string c, first decompresses it, that is, first finds the string x such
that C(x) = c,and simulates ML on input x. The parameter t is chosen large enough so
that M ′L has time to simulate M on input x for at least p(|x|) steps. We will show that,
provided that µ is polynomial time computable, there is a compression algorithm C such
that µn(x) ≤ nO(1)/2|C(x)|. Indeed, a stronger result is known.

7

Lemma 10 (Optimal Compression of Polynomial Time Computable Distributions)
Suppose µ is a polynomial-time computable distribution. Then there exists a polynomial-
time algorithm C such that for every n

1. C is injective: C (n, x) 6= C (n, y) iff x 6= y.

2. |C (n, x)| ≤ 1 + min
{
|x| , log 1

µn
(x)
}

.

Proof: If µn (x) ≤ 2−|x| then simply let C (x) = 1x, that is, 1 concatenated with x. If, on
the other hand, µn (x) > 2−|x|, then we let C (x) = 0z. Here z is the longest common prefix
of Fµn (x) and Fµn (x− 1) when both are written out in binary. Since µ is computable in
polynomial time, so is z. C is injective because only two binary strings s1 and s2 can have
the longest common prefix z; a third string s3 sharing z as a prefix must have a longer
prefix with either s1 or s2. Finally, since µn (x) ≤ 2−|x|, |C (n, x)| ≤ 1 + log 1

µn(x) . 2

Now the reduction is to map x onto

f (x) :=
〈
M,n,C (x) , 1t

〉
Here, M is a machine that, given n, c, finds the x such that C(n, x) = c and then simulates
ML on input x. The running time t is a time sufficient for M to find x and then complete
p(|x|) steps of simulation of ML(x). Clearly x ∈ L iff f(x) ∈NBH.

To verify the other condition, let us consider a possible output y = f(x) =
〈
M,n,C (x) , 1t

〉
of the reduction, and let m = nO(1) be its length. Then

P
z∼µn

[f(z) = y] = µn(x)

and

Um(y) =
1

nO(1)
· 1

2|C(x)| ≥
1

nO(1)
· µn(x)

8

	Distributional Problems
	Polynomial-Time on Average
	Heuristic Polynomial Time
	Samplable and Computable Distributions
	DistNP
	Existence of Complete Problems

